CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4770-4776.DOI: 10.11949/0438-1157.20191350
• Process system engineering • Previous Articles Next Articles
Received:
2019-11-05
Revised:
2019-11-15
Online:
2019-12-05
Published:
2019-12-05
Contact:
Junfei QIAO
通讯作者:
乔俊飞
作者简介:
朱宝(1987—),男,博士,基金资助:
CLC Number:
Bao ZHU, Junfei QIAO. Features extracted from auto-encoder based echo state network and its applications to process modeling[J]. CIESC Journal, 2019, 70(12): 4770-4776.
朱宝, 乔俊飞. 基于自编码神经网络特征提取的回声状态网络研究及过程建模应用[J]. 化工学报, 2019, 70(12): 4770-4776.
Add to citation manager EndNote|Ris|BibTeX
No. | Variable description |
---|---|
1 | A feed |
2 | D feed |
3 | E feed |
4 | A and C feed |
5 | recycle flow |
6 | reactor feed rate |
7 | reactor temperature |
8 | purge rate |
9 | product separator temperature |
10 | product separator pressure |
11 | product separator underflow |
12 | stripper pressure |
13 | stripper temperature |
14 | stripper steam flow |
15 | reactor cooling water outlet temperature |
16 | separator cooling water outlet temperature |
Table 1 Information of inputs of Tennessee-Eastman process
No. | Variable description |
---|---|
1 | A feed |
2 | D feed |
3 | E feed |
4 | A and C feed |
5 | recycle flow |
6 | reactor feed rate |
7 | reactor temperature |
8 | purge rate |
9 | product separator temperature |
10 | product separator pressure |
11 | product separator underflow |
12 | stripper pressure |
13 | stripper temperature |
14 | stripper steam flow |
15 | reactor cooling water outlet temperature |
16 | separator cooling water outlet temperature |
方法 | 网络测试RMSE |
---|---|
ESN | 0.0615 |
FEAE-ESN | 0.0207 |
Table 2 Modeling accuracy comparison between ESN and FEAE-ESN
方法 | 网络测试RMSE |
---|---|
ESN | 0.0615 |
FEAE-ESN | 0.0207 |
1 | 朱群雄, 张晓晗, 顾祥柏, 等. 基于特征提取的函数连接神经网络研究及其化工过程建模应用[J]. 化工学报, 2018, 69(3): 907-912. |
Zhu Q X, Zhang X H, Gu X B, et al. Research and application of feature extraction derived functional link neural network[J]. CIESC Journal, 2018, 69(3): 907-912. | |
2 | Binois M, Gramacy R B, Ludkovski M. Practical heteroscedastic Gaussian process modeling for large simulation experiments[J]. Journal of Computational and Graphical Statistics, 2018, 27(4): 808-821. |
3 | Li W, Zhao C, Gao F. Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring[J]. IEEE Transactions on Industrial Electronics, 2017, 65(3): 2683-2692. |
4 | Wu F Y, Asada H H. Implicit and intuitive grasp posture control for wearable robotic fingers: a data-driven method using partial least squares [J]. IEEE Transactions on Robotics, 2016, 32(1): 1-11. |
5 | Li H D, Xu Q S, Liang Y Z. libPLS: an integrated library for partial least squares regression and linear discriminant analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 176: 34-43. |
6 | Awad M, Khanna R. Support vector regression [J]. Neural Information Processing Letters & Reviews, 2007, 11(10): 203-224. |
7 | Bourinet J M. Rare-event probability estimation with adaptive support vector regression surrogates[J]. Reliability Engineering & System Safety, 2016, 150: 210-221. |
8 | 徐圆, 张伟, 张明卿, 等. 基于FEEMD-AE与反馈极限学习机组合模型预测研究与应用[J]. 化工学报, 2018, 69(3): 1064-1070. |
Xu Y, Zhang W, Zhang M Q, et al. Prediction research and application of a combination model based on FEEMD-AE and feedback extreme learning machine[J]. CIESC Journal, 2018, 69(3): 1064-1070. | |
9 | Tang J, Deng C, Huang G B. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 27(4): 809-821. |
10 | Sadeghi B H M. A BP-neural network predictor model for plastic injection molding process[J]. Journal of Materials Processing Technology, 2000, 103(3): 411-416. |
11 | Ren T, Liu S, Yan G, et al. Temperature prediction of the molten salt collector tube using BP neural network[J]. IET Renewable Power Generation, 2016, 10(2): 212-220. |
12 | Wu J, Long J, Liu M. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm[J]. Neurocomputing, 2015, 148: 136-142. |
13 | 赵忠盖, 刘飞. 动态因子分析模型及其在过程监控中的应用[J]. 化工学报, 2009, 60(1): 183-186. |
Zhao Z G, Liu F. Modeling using dynamic factor analysis and its application in process monitoring[J]. CIESC Journal, 2009, 60(1): 183-186. | |
14 | Ghiassi M, Saidane H, Zimbra D K. A dynamic artificial neural network model for forecasting time series events [J]. International Journal of Forecasting, 2005, 21(2): 341-362. |
15 | Du X, Vasudevan R, Johnson-Roberson M. Bio-LSTM: a biomechanically inspired recurrent neural network for 3-D pedestrian pose and gait prediction [J]. IEEE Robotics and Automation Letters, 2018, 4(2): 1501-1508. |
16 | Zen H, Sak H. Unidirectional long short-term memory recurrent neural network with recurrent output layer for low-latency speech synthesis[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015: 4470-4474. |
17 | Feng W, Wu Y, Fan Y. A new method for the prediction of network security situations based on recurrent neural network with gated recurrent unit[J]. International Journal of Intelligent Computing and Cybernetics, 2018, 11(6): 511-525. |
18 | Jaeger H. The “echo state” approach to analysing and training recurrent neural networks—with an erratum note[R].Bonn: German National Research Center for Information Technology GMD Technical Report, 2001. |
19 | Aboelmaged M G. Knowledge sharing through enterprise social network (ESN) systems: motivational drivers and their impact on employees productivity[J]. Journal of Knowledge Management, 2018, 22(2): 362-383. |
20 | Gillum T L, George R H, Leitmeyer J E. An autoencoder for clinical and regulatory data processing [J]. Drug Information Journal, 1995, 29(1): 107-113. |
21 | Kodirov E, Xiang T, Gong S. Semantic autoencoder for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3174-3183. |
22 | Zhang Z, Song Y, Qi H. Age progression/regression by conditional adversarial autoencoder[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5810-5818. |
23 | 彭荻, 贺彦林, 徐圆, 等. 基于数据特征提取的AANN-ELM研究及化工应用[J]. 化工学报, 2012, 63(9): 2920-2925. |
Peng D, He Y L, Xu Y, et al. Research and chemical application of data feature extraction based AANN-ELM neural network[J]. CIESC Journal, 2012, 63(9): 2920-2925. | |
24 | 才轶, 徐圆, 朱群雄, 等. 基于自联想神经网络的数据滤波功能与应用[J]. 计算机与应用化学, 2009, 26(5): 673-676. |
Cai Y, Xu Y, Zhu Q X, et al. Data filtering method and application based on auto-associative neural network[J]. Computers and Applied Chemistry, 2009, 26(5): 673-676. | |
25 | Hou X, Shen L, Sun K, et al. Deep feature consistent variational Autoencoder [C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2017: 1133-1141. |
26 | Yu J, Hong C, Rui Y, et al. Multitask autoencoder model for recovering human poses [J]. IEEE Transactions on Industrial Electronics, 2017, 65(6): 5060-5068. |
27 | Fu H, Lei P, Tao H, et al. Improved semi-supervised autoencoder for deception detection [J]. PloS ONE, 2019, 14(10): e0223361. |
28 | Co-Reyes J D, Liu Y X, Gupta A, et al. Self-consistent trajectory autoencoder: hierarchical reinforcement learning with trajectory embeddings [C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden, 2018. |
29 | Zhu Q X, Meng Q Q, He Y L. Novel multidimensional feature pattern classification method and its application to fault diagnosis [J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8906-8916. |
30 | Xu Y, Shen S Q, He Y L, et al. A novel hybrid method integrating ICA-PCA with relevant vector machine for multivariate process monitoring [J]. IEEE Transactions on Control Systems Technology, 2018, 27(4): 1780-1787. |
[1] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[2] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[3] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[4] | LIU Cong, XIE Li, YANG Huizhong. Multi-model soft sensor development for penicillin fermentation process based on improved density peak clustering [J]. CIESC Journal, 2021, 72(3): 1606-1615. |
[5] | Yuhao DU, Gaowei YAN, Rong LI, Fang WANG. Multiple working conditions soft sensor modeling method of geodesic flow kernel based on locally linear embedding [J]. CIESC Journal, 2020, 71(3): 1278-1287. |
[6] | Yanlin HE, Ye TIAN, Xiangbai GU, Yuan XU, Qunxiong ZHU. Regularization based functional link neural network and its applications to modeling complex chemical processes [J]. CIESC Journal, 2020, 71(3): 1072-1079. |
[7] | YANG Yijun,WANG Zhenlei,WANG Xin. Soft sensor modeling method based on hybrid model of nearest neighbor and neural network [J]. CIESC Journal, 2020, 71(12): 5696-5705. |
[8] | WANG Yaxin,XU Baochang,XU Chaonong,DONG Xiujuan,XU Liwei. Attention LSTM network identification method based on factory data [J]. CIESC Journal, 2020, 71(12): 5664-5671. |
[9] | Xuezhi DAI,Weili XIONG. A fast active learning method based on kernel extreme learning machine and its application for soft sensing [J]. CIESC Journal, 2020, 71(11): 5226-5236. |
[10] | Xiaoqin LIAN, Liwei WANG, Sa AN, Wei WEI, Zaiwen LIU. On soft sensor of chemical oxygen demand by SOM-RBF neural network [J]. CIESC Journal, 2019, 70(9): 3465-3472. |
[11] | Jing WU, Yiqi LIU, Jian LIU, Daoping HUANG, Yu QIU, Guangping YU. Study on the soft sensor of multi-kernel relevance vector machine based on time difference [J]. CIESC Journal, 2019, 70(4): 1472-1484. |
[12] | Wenpeng JI, Huizhong YANG. Multi-manifold soft sensor based on modified expanding search clustering algorithm [J]. CIESC Journal, 2019, 70(2): 723-729. |
[13] | Dejian LI, Haoran LIU, Bin LIU, Zeren LIU, Weitao WANG, Yan WEN. Predictive control of free calcium oxide based on improved echo state network [J]. CIESC Journal, 2019, 70(12): 4749-4759. |
[14] | Rongrong ZHAO, Zhonggai ZHAO, Fei LIU. Gaussian process regression modeling of fermentation process based on k-nearest neighbor mutual information [J]. CIESC Journal, 2019, 70(12): 4741-4748. |
[15] | QIU Yu, LIU Yiqi, WU Jing, HUANG Daoping. A self-adaptive multi-output soft sensor modeling based on deep neural network [J]. CIESC Journal, 2018, 69(7): 3101-3113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||