CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 821-830.DOI: 10.11949/0438-1157.20191199
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yu XU(),Yiqin CHEN,Jinghong ZHOU(),Zhijun SUI,Xinggui ZHOU
Received:
2019-10-14
Revised:
2019-11-29
Online:
2020-02-05
Published:
2020-02-05
Contact:
Jinghong ZHOU
通讯作者:
周静红
作者简介:
许于(1995—),男,硕士研究生,基金资助:
CLC Number:
Yu XU, Yiqin CHEN, Jinghong ZHOU, Zhijun SUI, Xinggui ZHOU. Numerical simulation of lithium-ion battery with LiFePO4 as cathode material: effect of particle size[J]. CIESC Journal, 2020, 71(2): 821-830.
许于, 陈怡沁, 周静红, 隋志军, 周兴贵. LiFePO4锂离子电池的数值模拟:正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830.
Add to citation manager EndNote|Ris|BibTeX
参数 | 负极 | 隔膜 | 正极 |
---|---|---|---|
Acell/m2 | 0.1694 | ||
li/μm | 34 | 30 | 70 |
Ri/μm | 0.0365 | 3.5 | |
ε1,i | 0.550 | 0.430 | |
ε2,i | 0.330 | 0.540 | 0.332 |
c0/(mol/m3) | 1200 | ||
cmax,i/(mol/m3) | 31370 | 22806 | |
SOC0,i | 0.8 | 0.03 | |
αi | 0.5 | 0.5 | |
brug | 1.5 | 1.5 | 1.5 |
D1/(m2/s) | 3.9×10-14 | 1.18×10-18 | |
σ1/(S/m) | 100 | 0.5 | |
t+ | 0.363 | ||
T/K | 298.15 | ||
F /(C/mol) | 96487 | ||
ki/(m2.5/(mol0.5·s)) | 3×10-11 | 1.4×10-12 |
Table 1 Model parameters for lithium-ion battery
参数 | 负极 | 隔膜 | 正极 |
---|---|---|---|
Acell/m2 | 0.1694 | ||
li/μm | 34 | 30 | 70 |
Ri/μm | 0.0365 | 3.5 | |
ε1,i | 0.550 | 0.430 | |
ε2,i | 0.330 | 0.540 | 0.332 |
c0/(mol/m3) | 1200 | ||
cmax,i/(mol/m3) | 31370 | 22806 | |
SOC0,i | 0.8 | 0.03 | |
αi | 0.5 | 0.5 | |
brug | 1.5 | 1.5 | 1.5 |
D1/(m2/s) | 3.9×10-14 | 1.18×10-18 | |
σ1/(S/m) | 100 | 0.5 | |
t+ | 0.363 | ||
T/K | 298.15 | ||
F /(C/mol) | 96487 | ||
ki/(m2.5/(mol0.5·s)) | 3×10-11 | 1.4×10-12 |
Fig.6 Lithium ion concentration (a) and local current density (b) at interface of cathode and separator in battery with different LFP particle sizes at different discharge rates
1 | Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2012, 46(5): 1125-1134. |
2 | Goodenough J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, 1(3): 204. |
3 | Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemcial Society, 2013, 135(4): 1167-1176. |
4 | Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211. |
5 | Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Advanced Energy Materials, 2018, 8(25): 1801149. |
6 | Shi J L, Xiao D D, Ge M Y, et al. High-capacity cathode material with high voltage for Li-ion batteries[J]. Advanced Materials, 2018, 30(9): 1705575. |
7 | Padhi A K, Goodenough J B, Nanjundaswamy K S. Phospho-olivines as positive-electrode materials for recharageable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. |
8 | Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-128. |
9 | 胡江涛, 郑家新, 潘锋. 锂电池磷酸铁锂正极材料的结构与性能相关性的研究进展[J]. 物理化学学报, 2019, 35(4): 22-31. |
Hu J T, Zheng J X, Pan F. Research progress on the correlation between structure and properties of lithium iron phosphate cathode materials[J]. Acta Physico-Chimica Sinica, 2019, 35(4): 22-31. | |
10 | Ferrari S, Lavall R L, Capsoni D, et al. Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4[J]. The Journal of Physical Chemistry C, 2010, 114(29): 12598-12603. |
11 | Ouyang C Y, Shi S Q, Wang Z X, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics: Condensed Matter, 2004, 16(13): 2265-2272. |
12 | Takahashi M, Tobishima S I, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics, Diffusion & Reactions, 2002, 148(3/4): 283-289. |
13 | Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148(3): A224-A229. |
14 | Lee K T, Kan W H, Nazar L F. Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn)[J]. Journal of the American Chemical Society, 2009, 131(17): 6044-6045. |
15 | Ferrari S, Lavall R L, Capsoni D, et al. Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4[J]. The Journal of Physical Chemistry C, 2010, 114(29): 12598-12603. |
16 | Satyavani T V S L, Ramya K B, Rajesh K V, et al. Effect of particle size on DC conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells[J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 40-44. |
17 | 王琦, 邓思旭, 刘晶冰, 等. 提高正极材料磷酸铁锂倍率性能的研究进展[J]. 化工进展, 2011, 30(12): 2652-2657. |
Wang Q, Deng S X, Liu J B, et al. Research progress in improving the performance of lithium iron phosphate in cathode materials[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2652-2657. | |
18 | Doyle M, Newman J. Modeling the performance of rechargeable lithium based cells design correlations for limiting cases[J]. Journal of Power Sources, 1995, 54(1): 46-51. |
19 | Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
20 | Newman J, Tiedemann W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1): 25-41. |
21 | Shirazi A H N, Azadi K M R, Rabczuk T. Numerical study of composite electrode s particle size effect on the electrochemical and heat generation of a Li-ion battery[J]. Journal of Nanotechnology in Engineering and Medicine, 2016, 6(4): 041003. |
22 | Newman J, Thomas-Alyea K E. Electrochemical Systems[M]. John Wiley & Sons, 2012. |
23 | Ye Y, Shi Y, Tay A A O. Electro-thermal cycle life model for lithium iron phosphate battery[J]. Journal of Power Sources, 2012, 217: 509-518. |
24 | Safari M, Delacourt C. Modeling of a commercial graphite/LiFePO4 cell[J]. Journal of the Electrochemical Society, 2011, 158(5): A562-A571. |
25 | 郭孝东, 钟本和, 唐艳, 等. 一次粒径和二次粒径对LiFePO4性能的影响[J]. 高校化学工程学报, 2013, (5): 884-888. |
Guo X D, Zhong B H, Tang Y, et al. Effect of primary particle size and secondary particle size on the properties of LiFePO4[J]. Journal of Chemical Engineering of Chinese Universities, 2013, (5): 884-888. | |
26 | Santhanagopalan S, Guo Q, Ramadass P, et al. Review of models for predicting the cycling performance of lithium ion batteries[J]. Journal of Power Sources, 2006, 156(2): 620-628. |
27 | Kumaresan K, Sikha G, White R E. Thermal model for a Li-ion cell[J]. Journal of the Electrochemical Society, 2008, 155(2): A164-A171. |
28 | Gerver R E, Meyers J P. Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations[J]. Journal of the Electrochemical Society, 2011, 158(7): A835-A843. |
29 | Valoen L O, Reimers J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2005, 152(5): A882-A891. |
30 | Taleghani S T, Marcos B, Lantagne G. Modeling and simulation of a commercial graphite-LiFePO4 cell in a full range of C-rates[J]. Journal of Applied Electrochemistry, 2018, 48(12): 1389-1400. |
31 | Liu H, Strobridge F C, Borkiewicz O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344(6191): 1252817. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[3] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[6] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[7] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[8] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[9] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[10] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[11] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[12] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
[13] | Feng LIU, Quan WANG, Panyu WU, Guo WEI, Xiang HE. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix [J]. CIESC Journal, 2022, 73(9): 4217-4225. |
[14] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
[15] | Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves [J]. CIESC Journal, 2022, 73(7): 2952-2961. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||