CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1163-1173.DOI: 10.11949/0438-1157.20191550
• Process system engineering • Previous Articles Next Articles
Jikai DONG(),Wenli DU(),Bing WANG,Qiaoyi XU
Received:
2019-12-19
Revised:
2019-12-26
Online:
2020-03-05
Published:
2020-03-05
Contact:
Wenli DU
通讯作者:
杜文莉
作者简介:
董吉开(1990—),男,博士研究生,基金资助:
CLC Number:
Jikai DONG, Wenli DU, Bing WANG, Qiaoyi XU. Investigating impacts of cost functions to atmospheric dispersion modeling and source term estimation in turbulent condition[J]. CIESC Journal, 2020, 71(3): 1163-1173.
董吉开, 杜文莉, 王冰, 许乔伊. 湍流状态下化学品扩散溯源中不同目标函数的影响分析[J]. 化工学报, 2020, 71(3): 1163-1173.
Add to citation manager EndNote|Ris|BibTeX
Model | a | b | c | d |
---|---|---|---|---|
Model 1 | 0.28065 | 0.72681 | 0.38029 | 0.59995 |
Model 2 | 0.30835 | 0.70756 | 0.34819 | 0.61652 |
Model 3 | 0.42271 | 0.65488 | 0.40053 | 0.56755 |
Table 1 Parameters of Gaussian dispersion coefficients
Model | a | b | c | d |
---|---|---|---|---|
Model 1 | 0.28065 | 0.72681 | 0.38029 | 0.59995 |
Model 2 | 0.30835 | 0.70756 | 0.34819 | 0.61652 |
Model 3 | 0.42271 | 0.65488 | 0.40053 | 0.56755 |
Model | Scenario | ||||
---|---|---|---|---|---|
Model 1 | 1 | 0.8844 | 0.8956 | 0.1301 | 0.2607 |
2 | 0.9441 | 0.9095 | -0.1074 | 0.1069 | |
3 | 0.7638 | 0.8080 | -0.1030 | 0.2810 | |
Model 2 | 1 | 0.8914 | 0.8903 | 0.1180 | 0.2418 |
2 | 0.9415 | 0.9111 | -0.1200 | 0.1104 | |
3 | 0.7558 | 0.8042 | -0.1157 | 0.2868 | |
Model 3 | 1 | 0.8954 | 0.8389 | 0.0542 | 0.2185 |
2 | 0.9277 | 0.9173 | -0.1881 | 0.1274 | |
3 | 0.7645 | 0.8232 | -0.1794 | 0.2594 |
Table 2 Model index of test scenarios
Model | Scenario | ||||
---|---|---|---|---|---|
Model 1 | 1 | 0.8844 | 0.8956 | 0.1301 | 0.2607 |
2 | 0.9441 | 0.9095 | -0.1074 | 0.1069 | |
3 | 0.7638 | 0.8080 | -0.1030 | 0.2810 | |
Model 2 | 1 | 0.8914 | 0.8903 | 0.1180 | 0.2418 |
2 | 0.9415 | 0.9111 | -0.1200 | 0.1104 | |
3 | 0.7558 | 0.8042 | -0.1157 | 0.2868 | |
Model 3 | 1 | 0.8954 | 0.8389 | 0.0542 | 0.2185 |
2 | 0.9277 | 0.9173 | -0.1881 | 0.1274 | |
3 | 0.7645 | 0.8232 | -0.1794 | 0.2594 |
模型 | 优化 目标 | x轴偏差/m | y轴偏差/m | z轴偏差/m | 总距离差/m | 源强相对偏差/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||
模型1 | 1 | 8.35 | 6.36 | 0.96 | 0.66 | 0.53 | 0.61 | 8.61 | 6.17 | 9.22 | 6.73 |
2 | 5.11 | 4.12 | 0.81 | 0.49 | 0.42 | 0.57 | 5.32 | 4.02 | 8.83 | 6.92 | |
3 | 4.98 | 3.86 | 0.75 | 0.46 | 0.32 | 0.49 | 5.15 | 3.79 | 10.68 | 8.47 | |
4 | 5.45 | 4.65 | 0.81 | 0.49 | 0.35 | 0.54 | 5.63 | 4.58 | 9.61 | 7.37 | |
5 | 5.45 | 4.65 | 0.81 | 0.49 | 0.35 | 0.54 | 5.63 | 4.58 | 10.46 | 8.38 | |
6 | 5.45 | 4.65 | 0.81 | 0.49 | 0.35 | 0.54 | 5.63 | 4.58 | 10.75 | 8.34 | |
7 | 13.28 | 7.82 | 1.25 | 0.99 | 1.45 | 1.12 | 13.55 | 7.73 | 10.42 | 8.75 | |
模型2 | 1 | 8.13 | 6.38 | 0.96 | 0.66 | 0.56 | 0.64 | 8.42 | 6.16 | 8.99 | 6.22 |
2 | 5.14 | 4.11 | 0.81 | 0.49 | 0.50 | 0.61 | 5.36 | 4.02 | 9.46 | 7.35 | |
3 | 5.20 | 3.88 | 0.75 | 0.46 | 0.39 | 0.55 | 5.37 | 3.81 | 11.62 | 8.71 | |
4 | 5.54 | 4.57 | 0.81 | 0.49 | 0.40 | 0.58 | 5.74 | 4.48 | 10.06 | 7.74 | |
5 | 5.54 | 4.57 | 0.81 | 0.49 | 0.40 | 0.57 | 5.73 | 4.48 | 11.47 | 8.76 | |
6 | 5.54 | 4.57 | 0.81 | 0.49 | 0.40 | 0.58 | 5.73 | 4.48 | 11.48 | 8.73 | |
7 | 13.21 | 7.95 | 1.26 | 0.99 | 1.65 | 1.12 | 13.53 | 7.82 | 11.28 | 9.54 | |
模型3 | 1 | 6.66 | 5.34 | 0.96 | 0.66 | 0.63 | 0.70 | 6.95 | 5.19 | 9.61 | 7.52 |
2 | 7.47 | 4.32 | 0.80 | 0.49 | 0.63 | 0.63 | 7.64 | 4.23 | 14.51 | 8.88 | |
3 | 8.19 | 4.05 | 0.75 | 0.46 | 0.55 | 0.63 | 8.29 | 4.02 | 15.68 | 10.55 | |
4 | 8.39 | 4.29 | 0.81 | 0.48 | 0.55 | 0.62 | 8.51 | 4.23 | 14.05 | 9.13 | |
5 | 8.38 | 4.29 | 0.81 | 0.49 | 0.54 | 0.62 | 8.50 | 4.23 | 16.49 | 10.20 | |
6 | 8.39 | 4.29 | 0.81 | 0.48 | 0.55 | 0.62 | 8.52 | 4.23 | 15.87 | 10.44 | |
7 | 10.08 | 7.67 | 1.27 | 0.97 | 1.69 | 0.98 | 10.58 | 7.41 | 9.26 | 8.15 |
Table 3 Mean and standard deviation of result of source term estimation for all scenarios
模型 | 优化 目标 | x轴偏差/m | y轴偏差/m | z轴偏差/m | 总距离差/m | 源强相对偏差/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||
模型1 | 1 | 8.35 | 6.36 | 0.96 | 0.66 | 0.53 | 0.61 | 8.61 | 6.17 | 9.22 | 6.73 |
2 | 5.11 | 4.12 | 0.81 | 0.49 | 0.42 | 0.57 | 5.32 | 4.02 | 8.83 | 6.92 | |
3 | 4.98 | 3.86 | 0.75 | 0.46 | 0.32 | 0.49 | 5.15 | 3.79 | 10.68 | 8.47 | |
4 | 5.45 | 4.65 | 0.81 | 0.49 | 0.35 | 0.54 | 5.63 | 4.58 | 9.61 | 7.37 | |
5 | 5.45 | 4.65 | 0.81 | 0.49 | 0.35 | 0.54 | 5.63 | 4.58 | 10.46 | 8.38 | |
6 | 5.45 | 4.65 | 0.81 | 0.49 | 0.35 | 0.54 | 5.63 | 4.58 | 10.75 | 8.34 | |
7 | 13.28 | 7.82 | 1.25 | 0.99 | 1.45 | 1.12 | 13.55 | 7.73 | 10.42 | 8.75 | |
模型2 | 1 | 8.13 | 6.38 | 0.96 | 0.66 | 0.56 | 0.64 | 8.42 | 6.16 | 8.99 | 6.22 |
2 | 5.14 | 4.11 | 0.81 | 0.49 | 0.50 | 0.61 | 5.36 | 4.02 | 9.46 | 7.35 | |
3 | 5.20 | 3.88 | 0.75 | 0.46 | 0.39 | 0.55 | 5.37 | 3.81 | 11.62 | 8.71 | |
4 | 5.54 | 4.57 | 0.81 | 0.49 | 0.40 | 0.58 | 5.74 | 4.48 | 10.06 | 7.74 | |
5 | 5.54 | 4.57 | 0.81 | 0.49 | 0.40 | 0.57 | 5.73 | 4.48 | 11.47 | 8.76 | |
6 | 5.54 | 4.57 | 0.81 | 0.49 | 0.40 | 0.58 | 5.73 | 4.48 | 11.48 | 8.73 | |
7 | 13.21 | 7.95 | 1.26 | 0.99 | 1.65 | 1.12 | 13.53 | 7.82 | 11.28 | 9.54 | |
模型3 | 1 | 6.66 | 5.34 | 0.96 | 0.66 | 0.63 | 0.70 | 6.95 | 5.19 | 9.61 | 7.52 |
2 | 7.47 | 4.32 | 0.80 | 0.49 | 0.63 | 0.63 | 7.64 | 4.23 | 14.51 | 8.88 | |
3 | 8.19 | 4.05 | 0.75 | 0.46 | 0.55 | 0.63 | 8.29 | 4.02 | 15.68 | 10.55 | |
4 | 8.39 | 4.29 | 0.81 | 0.48 | 0.55 | 0.62 | 8.51 | 4.23 | 14.05 | 9.13 | |
5 | 8.38 | 4.29 | 0.81 | 0.49 | 0.54 | 0.62 | 8.50 | 4.23 | 16.49 | 10.20 | |
6 | 8.39 | 4.29 | 0.81 | 0.48 | 0.55 | 0.62 | 8.52 | 4.23 | 15.87 | 10.44 | |
7 | 10.08 | 7.67 | 1.27 | 0.97 | 1.69 | 0.98 | 10.58 | 7.41 | 9.26 | 8.15 |
1 | Bhattacharjee Y J. Combating terrorism: new efforts to detect explosives require advances on many fronts[J]. Science, 2008, 320(5882): 1416-1417. |
2 | Efthimiou G C, Andronopoulos S, Tavares R, et al. CFD-Rans prediction of the dispersion of a hazardous airborne material released during a real accident in an industrial environment[J]. Journal of Loss Prevention in the Process Industries, 2017, 46: 23-36. |
3 | Kumar P, Feiz A A, Ngae P, et al. CFD simulation of short-range plume dispersion from a point release in an urban like environment[J]. Atmospheric Environment, 2015, 122: 645-656. |
4 | Lin Y, Chen G, Chen T, et al. The influence of advertisement boards, street and source layouts on CO dispersion and building intake fraction in three-dimensional urban-like models[J]. Building and Environment, 2019, 150: 297-321. |
5 | Dharmavaram S, Hanna S, Hansen O R. Consequence analysis—using a CFD model for industrial sites[J]. Process Safety Progress, 2005, 24(4): 316-272. |
6 | Mouilleau Y, Champassith A. CFD simulations of atmospheric gas dispersion using the fire dynamics simulator (Fds)[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 316-323. |
7 | Kumar P, Singh S K, Ngae P, et al. Assessment of a CFD model for short-range plume dispersion: applications to the fusion field trial 2007 (FFT-07) diffusion experiment[J]. Atmospheric Research, 2017, 197: 84-93. |
8 | Onodera N, Aoki T, Shimokawabe T, et al. Large-scale les wind simulation using lattice Boltzmann method for a 10 km× 10 km area in metropolitan Tokyo[J]. TSUBAME e-Science Journal Global Scientific Information and Computing Center, 2013, 9: 2-8. |
9 | Hanna S R, Hansen O R, Ichard M, et al. CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas[J]. Atmospheric Environment, 2009, 43(2): 262-270. |
10 | Long K J, Zajaczkowski F J, Haupt S E, et al. Modeling a hypothetical chlorine release on a college campus[J]. Journal of Computers, 2009, 4(9): 881-890. |
11 | Baalisampang T, Abbassi R, Garaniya V, et al. Fire impact assessment in FLNG processing facilities using computational fluid dynamics (CFD)[J]. Fire Safety Journal, 2017, 92: 42-52. |
12 | Hutchinson M, Oh H, Chen W H J. A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors[J]. Information Fusion, 2017, 36: 130-148. |
13 | 陈增强. 危险化学品泄漏源的定位研究[D]. 北京: 北京化工大学, 2013. |
Chen Z Q. Research on source identification approaches for hazardous chemical releases[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
14 | Lauret P, Heymes F, Aprin L, et al. Atmospheric dispersion modeling using artificial neural network based cellular automata[J]. Environmental Modelling & Software, 2016, 85: 56-69. |
15 | Wang B, Qian F. Three dimensional gas dispersion modeling using cellular automata and artificial neural network in urban environment[J]. Process Safety and Environmental Protection, 2018, 120: 286-301. |
16 | Zhou Z, Chen J, Jin G. Prediction of lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method[J]. Acta Mechanica, 2017, 228(9): 3203-3222. |
17 | Trini C S, Armand P, Tinarelli G, et al. Validation of a lagrangian particle dispersion model with wind tunnel and field experiments in urban environment[J]. Atmospheric Environment, 2018, 193: 273-289. |
18 | Holmes N S, Morawska L J. A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available[J]. Atmospheric Environment, 2006, 40(30): 5902-5928. |
19 | Bosanquet C, Pearson J L. The spread of smoke and gases from chimneys[J]. Transactions of the Faraday Society, 1936, 32: 1249-1263. |
20 | Green A, Singhal R, Venkateswar R. Analytic extensions of the gaussian plume model[J]. Journal of the Air Pollution Control Association, 1980, 30(7): 773-776. |
21 | Weil J, Brower R P. An updated Gaussian plume model for tall stacks[J]. Journal of the Air Pollution Control Association, 1984, 34(8): 818-827. |
22 | Horst T W. A surface depletion model for deposition from a Gaussian Plume[J]. Atmospheric Environment, 1977, 11(1): 41-46. |
23 | de Visscher A. Air Dispersion Modeling: Foundations and Applications[M]. John Wiley & Sons, 2013: 141-200. |
24 | Li H, Zhang J, Yi J. Computational source term estimation of the Gaussian puff dispersion[J]. Soft Computing, 2018, 23(1): 59-75. |
25 | Qiu S, Chen B, Wang R, et al. Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization[J]. Atmospheric Environment, 2018, 178: 158-163. |
26 | Cui J, Lang J, Chen T, et al. Investigating the impacts of atmospheric diffusion conditions on source parameter identification based on an optimized inverse modelling method[J]. Atmospheric Environment, 2019, 205: 19-29. |
27 | Efthimiou G C, Kovalets I V, Venetsanos A, et al. An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment[J]. Atmospheric Environment, 2017, 170: 118-129. |
28 | Wang Y, Huang H, Huang L, et al. Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions[J]. Engineering Applications of Artificial Intelligence, 2018, 75: 102-113. |
29 | Ma D, Tan W, Zhang Z, et al. Parameter identification for continuous point emission source based on tikhonov regularization method coupled with particle swarm optimization algorithm[J]. J. Hazard. Mater., 2017, 325: 239-250. |
30 | Hutchinson M, Oh H, Chen W H. Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions[J]. Information Fusion, 2018, 42: 179-189. |
31 | Ma D, Tan W, Wang Q, et al. Location of contaminant emission source in atmosphere based on optimal correlated matching of concentration distribution[J]. Process Safety and Environmental Protection, 2018, 117: 498-510. |
32 | Cervone G, Franzese P. Monte Carlo source detection of atmospheric emissions and error functions analysis[J]. Computers & Geosciences, 2010, 36(7): 902-909. |
33 | Hansen N. The CMA Evolution Strategy: A Tutorial[M]. New York: Springer, 2005. |
34 | Auger A, Hansen N. Tutorial CMA-Es: evolution strategies and covariance matrix adaptation[C]// Conference Companion on Genetic & Evolutionary Computation. New York: Association for Computing Machinery, 2012. |
35 | Rood A S. Performance evaluation of aermod, calpuff, and legacy air dispersion models using the winter validation tracer study dataset[J]. Atmospheric Environment, 2014, 89: 707-720. |
36 | Tartakovsky D, Stern E, Broday D M. Comparison of dry deposition estimates of aermod and calpuff from area sources in flat terrain[J]. Atmospheric Environment, 2016, 142: 430-432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||