CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1528-1539.DOI: 10.11949/0438-1157.20191207
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Ruichao TIAN(),Shuyan WANG(),Baoli SHAO,Haoting LI,Yulin WANG
Received:
2019-10-22
Revised:
2020-01-29
Online:
2020-04-05
Published:
2020-04-05
Contact:
Shuyan WANG
通讯作者:
王淑彦
作者简介:
田瑞超(1993—),女,博士研究生, 基金资助:
CLC Number:
Ruichao TIAN, Shuyan WANG, Baoli SHAO, Haoting LI, Yulin WANG. Numerical simulation of hydrodynamic characteristics of particles and power-law fluid in fluidized beds using kinetic theory of rough spheres[J]. CIESC Journal, 2020, 71(4): 1528-1539.
田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
Add to citation manager EndNote|Ris|BibTeX
参数 | 文献[ 实验值 | 本文对应的模拟值 | 文献[ | 本文对应的模拟值 |
---|---|---|---|---|
颗粒密度/(kg/m3) | 2258 | 2258 | 8030 | 8030 |
颗粒直径/m | 0.004~0.005 | 0.0046 | 0.003 | 0.003 |
液体密度/(kg/m3) | — | 1001 | — | 1000 |
液体流动指数 | 0.82 | 0.82 | 1 | |
液体稠度系数/(Pa·sn) | 0.013 | 0.013 | — | 1×10-3 |
床高/m | 2.0 | 2.0 | 0.6 | 0.6 |
床宽/m | 0.09 | 0.09 | 0.08 | 0.08 |
初始颗粒浓度 | 0.578 | 0.578 | 0.6 | 0.6 |
初始床层高度/m | 0.12 | 0.12 | 0.24 | 0.24 |
恢复系数 | — | 0.95 | — | 0.95 |
壁面恢复系数 | — | 0.9 | — | 0.9 |
切向恢复系数 | — | -0.2 | — | -0.2 |
壁面摩擦系数 | — | 0.2 | — | 0.2 |
Table 1 Parameters used in simulations and experiments by Broniarz-Press et al.[32] and Ehsani et al.[33]
参数 | 文献[ 实验值 | 本文对应的模拟值 | 文献[ | 本文对应的模拟值 |
---|---|---|---|---|
颗粒密度/(kg/m3) | 2258 | 2258 | 8030 | 8030 |
颗粒直径/m | 0.004~0.005 | 0.0046 | 0.003 | 0.003 |
液体密度/(kg/m3) | — | 1001 | — | 1000 |
液体流动指数 | 0.82 | 0.82 | 1 | |
液体稠度系数/(Pa·sn) | 0.013 | 0.013 | — | 1×10-3 |
床高/m | 2.0 | 2.0 | 0.6 | 0.6 |
床宽/m | 0.09 | 0.09 | 0.08 | 0.08 |
初始颗粒浓度 | 0.578 | 0.578 | 0.6 | 0.6 |
初始床层高度/m | 0.12 | 0.12 | 0.24 | 0.24 |
恢复系数 | — | 0.95 | — | 0.95 |
壁面恢复系数 | — | 0.9 | — | 0.9 |
切向恢复系数 | — | -0.2 | — | -0.2 |
壁面摩擦系数 | — | 0.2 | — | 0.2 |
1 | Kato Y, Ishimaru A, Kadone H, et al. Characteristics of bubble column with a simultaneous gas-liquid injection nozzle[J]. Kagaku Kogaku Ronbunshu, 1980, 6(6): 614-620. |
2 | Muroyama K, Fukuma M, Yasunishi A. Wall-to-bed heat transfer in liquid-solid and gas-liquid-solid fluidized beds(Ⅰ): Liquid-solid fluidized beds[J]. The Canadian Journal of Chemical Engineering, 1986, 64(3): 399-408. |
3 | Kang Y, Kim S D. Heat transfer characteristics in liquid-fluidized beds[J]. Korean Chemical Engineering Research, 1987, 25(1): 81-81. |
4 | Liang W, Yu Z, Jin Y, et al. Synthesis of linear alkylbenzene in a liquid-solid circulating fluidized bed reactor[J]. Journal of Chemical Technology & Biotechnology, 1995, 62(1): 98-102. |
5 | 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62. |
Li H Z, Kwauk M S. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62. | |
6 | 马红钦, 朱慧铭, 谭欣, 等. 脱硅中液固循环流化床清洁传热[J]. 化工学报, 2003, 54(3): 288-293. |
Ma H Q, Zhu H M, Tan X, et al. Cleaning heat transfer of desiliconization heat exchange with liquid-solid fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(3): 288-293. | |
7 | Lan Q, Zhu J X, Bassi A S, et al. Continuous protein recovery using a liquid-solid circulating fluidized bed ion exchange system: modelling and experimental studies[J]. The Canadian Journal of Chemical Engineering, 2000, 78(5): 858-866. |
8 | Reddy R K, Sathe M J, Joshi J B, et al. Recent developments in experimental (PIV) and numerical (DNS) investigation of solid-liquid fluidized beds[J]. Chemical Engineering Science, 2013, 92: 1-12. |
9 | Chen Y M, Jang C S, Cai P, et al. On the formation and disintegration of particle clusters in a liquid-solid transport bed[J]. Chemical Engineering Science, 1991, 46(9): 2253-2268. |
10 | Di Felice R. Hydrodynamics of liquid fluidisation[J]. Chemical Engineering Science, 1995, 50(8): 1213-1245. |
11 | Kmieć A. Particle distributions and dynamics of particle movement in solid-liquid fluidized beds[J]. The Chemical Engineering Journal, 1978, 15(1): 1-12. |
12 | Dadashi A, Zhu J J, Zhang C. A computational fluid dynamics study on the flow field in a liquid-solid circulating fluidized bed riser[J]. Powder Technology, 2014, 260: 52-58. |
13 | 刘国栋, 沈志恒, 王帅, 等. 液固流化床中颗粒流动特性的数值模拟[J]. 哈尔滨工业大学学报, 2010, 42(7): 1108-1111. |
Liu G D, Shen Z H, Wang S, et al. Simulation of hydrodynamics of particles in a liquid-solid fluidized bed[J]. Journal of Harbin Institute of Technology, 2010, 42(7): 1108-1111. | |
14 | Ehsani M, Movahedirad S, Shahhosseini S. The effect of particle properties on the heat transfer characteristics of a liquid-solid fluidized bed heat exchanger[J]. International Journal of Thermal Sciences, 2016, 102: 111-121. |
15 | 王勤辉, 杨秋辉, 吴学成, 等. 多相流中颗粒旋转运动特性的研究进展[J]. 化工学报, 2011, 62(9): 2381-2390. |
Wang Q H, Yang Q H, Wu X C, et al. Research progress of particle rotation characteristics in multi-phase flows[J]. CIESC Journal, 2011, 62(9): 2381-2390. | |
16 | Torobin L B, Gauvin W H. Fundamental aspects of solids-gas flow(Ⅳ): The effects of particle rotation, roughness and shape[J]. The Canadian Journal of Chemical Engineering, 1960, 38(5): 142-153. |
17 | Best J L. The influence of particle rotation on wake stability at particle Reynolds numbers, ReP<300—implications for turbulence modulation in two-phase flows[J]. International Journal of Multiphase Flow, 1998, 24(5): 693-720. |
18 | 由长福, 祁海鹰, 徐旭常. 煤粉颗粒所受Magnus力的数值模拟[J]. 工程热物理学报, 2001, 22(5): 625-628. |
You C F, Qi H Y, Xu X C. Numerical simulation of Magnus lift on a coal particle[J]. Journal of Engineering Thermophysics, 2001, 22(5): 625-628. | |
19 | Kajishima T. Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 721-728. |
20 | Chhabra R P. Bubbles, Drops, and Particles In Non-Newtonian Fluids[M]. Boca Raton:CRC Press, 2006. |
21 | Patel S K, Majumder S K. Interfacial stress in non-Newtonian flow through packed bed[J]. Powder Technology, 2011, 211(1): 127-134. |
22 | de Castro A R, Radilla G. Non-Darcian flow of shear-thinning fluids through packed beads: experiments and predictions using Forchheimer s law and Ergun s equation[J]. Advances in Water Resources, 2017, 100: 35-47. |
23 | Qi Z, Kuang S, Rong L, et al. Lattice Boltzmann investigation of the wake effect on the interaction between particle and power-law fluid flow[J]. Powder Technology, 2018, 326: 208-221. |
24 | Goldshtein A, Shapiro M. Mechanics of collisional motion of granular materials(Ⅰ): General hydrodynamic equations[J]. Journal of Fluid Mechanics, 1995, 282: 75-114. |
25 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. London: Academic Press, 1994. |
26 | Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Gases[M]. 3rded. Cambridge: Cambridge University Press, 1970. |
27 | Lun C K K. Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres[J]. Journal of Fluid Mechanics, 1991, 233: 539-559. |
28 | Benyahia S, Syamlal M, Brien T J O. Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe[J]. Powder Technology, 2005, 156(2/3): 62-72. |
29 | Wilcox D C. Turbulence Modeling for CFD[M]. California: DCW Industries, 1993. |
30 | Kemblowski Z, Dziubinski M, Seck J. Flow of non-Newtonian fluids through granular media[J]. Advances in Transport Processes, 1989, 5: 117-175. |
31 | Jenkins J T, Louge M Y. On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall[J]. Physics of Fluids, 1997, 9(10): 2835-2840. |
32 | Broniarz-Press L, Agacinski P, Rozanski J. Shear-thinning fluids flow in fixed and fluidised beds[J]. International Journal of Multiphase Flow, 2007, 33(6): 675-689. |
33 | Ehsani M, Movahedirad S, Shahhosseini S, et al. Effects of restitution and specularity coefficients on solid-liquid fluidized bed hydrodynamics[J]. Chemical Engineering & Technology, 2015, 38(10): 1827-1836. |
34 | Subbarao D. A model for cluster size in risers[J]. Powder Technology, 2010, 199(1): 48-54. |
35 | Harris A T, Davidson J F, Thorpe R B. The prediction of particle cluster properties in the near wall region of a vertical riser[J]. Powder Technology, 2002, 127(2): 128-143. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[5] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[6] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[7] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[8] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[12] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[13] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[14] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||