CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1609-1617.DOI: 10.11949/0438-1157.20191177
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Lin ZHU1(),Wei HAN1,Wensong LI1,Changcheng WU2,Fang LI1,2,Wei XUE1,2(),Yanji WANG1,2
Received:
2019-10-11
Revised:
2020-01-09
Online:
2020-04-05
Published:
2020-04-05
Contact:
Wei XUE
朱林1(),韩威1,李文松1,邬长城2,李芳1,2,薛伟1,2(),王延吉1,2
通讯作者:
薛伟
作者简介:
朱林(1996—),女,硕士研究生, 基金资助:
CLC Number:
Lin ZHU, Wei HAN, Wensong LI, Changcheng WU, Fang LI, Wei XUE, Yanji WANG. Highly selective hydrolyzation of cyclohexyl acetate over HZSM-5 assisted by [BMIm]Br ionic liquid[J]. CIESC Journal, 2020, 71(4): 1609-1617.
朱林, 韩威, 李文松, 邬长城, 李芳, 薛伟, 王延吉. [BMIm]Br离子液体辅助HZSM-5催化乙酸环己酯高选择性水解反应[J]. 化工学报, 2020, 71(4): 1609-1617.
Add to citation manager EndNote|Ris|BibTeX
No. | Catalyst | Co-catalyst① | Cyclohexyl acetate conversion /% | Cyclohexanol selectivity/% |
---|---|---|---|---|
1 | — | — | 1.0 | 32.0 |
2 | HZSM-5 | — | 56.9 | 27.9 |
3 | HZSM-5 | [BMIm]BF4 | 35.4 | 99.7 |
4 | HZSM-5 | [BMIm]Br | 74.8 | 98.4 |
5 | — | [BMIm]BF4 | 2.6 | 100 |
6 | — | [BMIm]Br | 1.3 | 100 |
7 | HZSM-5 | [HSO3BMIm]HSO4 [ | 81.6 | 79.7 |
8 | HZSM-5 | NaBr [ | 56.1 | 48.0 |
9 | HZSM-5 | ZnSO4 [ | 4.1 | 75.3 |
10 | HZSM-5 | NaHSO4 [ | 67.7 | 42.8 |
Table 1 Effect of different co-catalyts on hydrolyzation of cyclohexyl acetate over HZSM-5 catalyst
No. | Catalyst | Co-catalyst① | Cyclohexyl acetate conversion /% | Cyclohexanol selectivity/% |
---|---|---|---|---|
1 | — | — | 1.0 | 32.0 |
2 | HZSM-5 | — | 56.9 | 27.9 |
3 | HZSM-5 | [BMIm]BF4 | 35.4 | 99.7 |
4 | HZSM-5 | [BMIm]Br | 74.8 | 98.4 |
5 | — | [BMIm]BF4 | 2.6 | 100 |
6 | — | [BMIm]Br | 1.3 | 100 |
7 | HZSM-5 | [HSO3BMIm]HSO4 [ | 81.6 | 79.7 |
8 | HZSM-5 | NaBr [ | 56.1 | 48.0 |
9 | HZSM-5 | ZnSO4 [ | 4.1 | 75.3 |
10 | HZSM-5 | NaHSO4 [ | 67.7 | 42.8 |
Fig.2 Effect of reaction temperature on hydrolyzation of cyclohexyl acetate over HZSM-5/[BMIm]Br(m(HZSM-5)=1.2 g,V(cyclohexyl acetate)=8 ml (55 mmol), V(H2O)=24 ml (1333 mmol), m([BMIm]Br)=2 g,t= 5 h)
Fig.3 Effect of reaction time on hydrolyzation of cyclohexyl acetate over HZSM-5/[BMIm]Br (m(HZSM-5)=1.2 g, V(cyclohexyl acetate)=8 ml (55 mmol),V(H2O)=24 ml (1333 mmol),m([BMIm]Br)=2 g,T= 140℃)
Fig.4 Effect of [BMIm]Br dosage on hydrolyzation of cyclohexyl acetate over HZSM-5 catalyst(m(HZSM-5)=1.2 g, V(cyclohexyl acetate)=8 ml (55 mmol),V(H2O)=24 ml (1333 mmol), T= 140℃,t=5 h)
Fig.6 Reusability of [BMIm]Br for hydrolyzation of cyclohexyl acetate catalyzed by HZSM-5 (m([BMIm]Br)=3 g, m(HZSM-5)=1.2 g,V(cyclohexyl acetate) = 8 ml, V(H2O)=24 ml,T=140℃, t=5 h)
Fig.7 Reusability of HZSM-5 for hydrolyzation of cyclohexyl acetate(m([BMIm]Br)=3 g,m(HZSM-5)=1.2 g, V(cyclohexyl acetate) = 8 ml,V(H2O)=24 ml, T=140℃, t=5 h)
Fig.10 XRD patterns of HZSM-5 before and after reactiona—fresh HZSM-5; b—recovered HZSM-5, washed with ethanol and dried at 120℃ for 12 h; c—recovered HZSM-5, sample b calcined at 550℃ for 5 h
1 | Zhou W J, Wischert R, Xue K, et al. Highly selective liquid-phase oxidation of cyclohexane to KA oil over Ti-MWW catalyst: evidence of formation of oxyl radicals[J]. ACS Catalysis, 2014, 4(1): 53-62. |
2 | 梁学博, 胡伯羽, 袁永军, 等. 金属卟啉催化空气氧化环己烷反应的工艺优化[J]. 化工学报, 2007, 58(3): 794-800. |
Liang X B, Hu B Y, Yuan Y J, et al. Optimization of aerobic oxidation of cyclohexane catalyzed by metalloporphyrins[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 794-800. | |
3 | 纪红兵, 钱宇, 罗思睿, 等. 温和条件下环己烷液相选择性氧化改性VPO催化剂[J]. 化工学报, 2004, 55(12): 2027-2031. |
Ji H B, Qian Y, Luo S R, et al. Liquid-phase selective oxidation of cyclohexane with modified-VPO catalysts under mild condition[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(12): 2027-2031. | |
4 | Misono M, Inui T. New catalytic technologies in Japan[J]. Catalysis Today, 1999, 51(3): 369-375. |
5 | Ishida H. Liquid-phase hydration process of cyclohexene with zeolites[J]. Catalysis Surveys from Japan, 1997, 1: 241-246 |
6 | Nagahara H, Ono M, Konishi M, et al. Partial hydrogenation of benzene to cyclohexene[J]. Applied Surface Science, 1997, 121: 448-451. |
7 | Shan X, Cheng Z, Yuan P. Reaction kinetics and mechanism for hydration of cyclohexene over ion-exchange resin and H-ZSM-5[J]. Chemical Engineering Journal, 2011, 175: 423-432. |
8 | 娄舒洁, 肖超贤, 孙耿, 等. 由苯制备环己醇新途径[J]. 催化学报, 2013, 34(1): 251-256. |
Lou S J, Xiao C X, Sun G, et al. A new method for preparation of cylohexanol from benzene[J]. Chines Journal of Catalysis, 2013, 34(1): 251-256. | |
9 | Li J, Yang L, Li F, et al. Hydration of cyclohexene to cyclohexanol over SO3H-functionalized imidazole ionic liquids[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114: 173-183. |
10 | Ahamed I R, Freund H, Guit R P M, et al. Evaluation of different process concepts for the indirect hydration of cyclohexene to cyclohexanol[J]. Organic Process Research & Development, 2013, 17(3): 343-358. |
11 | Steyer F, Sundmacher K. VLE and LLE dataset for the system cyclohexane + cyclohexene + water + cyclohexanol + formic acid + formic acid cyclohexanol ester[J]. Journal of Chemical & Engineering Data, 2005, 50(4): 1277-1282. |
12 | Steyer, F, Sundmacher K. Cyclohexanol production via esterification of cyclohexene with formic acid andsubsequent hydration of the esters reaction kinetics[J]. Industrial & Engineering Chemistry Research, 2007, 46(4): 1099-1104. |
13 | Katariya A, Freund H, Sundmacher K. Two-step reactive distillation process for cyclohexanol production from cyclohexene [J]. Industrial & Engineering Chemistry Research, 2009, 48(21): 9534-9545. |
14 | 杜文明, 薛伟, 李芳, 等.由环己烯经甲酸环己酯制备环己醇催化反应研究[J].河北工业大学学报, 2012, 41(4): 34-39. |
Du W M, Xue W, Li F, et al. Study on the catalytic synthesis of cyclohexanol from cyclohexene via cyclohexyl formate[J]. Journal of Hebei University of Technology, 2012, 41(4): 34-39. | |
15 | Cao Z J, Zhao X, He F Q, et al. Highly efficient indirect hydration of olefins to alcohols using superacidic polyoxometalate-based ionic hybridscatalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6654-6663. |
16 | Chakrabarti A, Sharma M M. Cyclohexanol from cyclohexene via cyclohexyl acetate: catalysis by ion-exchange resin and acid-treated clay[J]. Reactive Polymers, 1992, 18(2): 107-115. |
17 | Xue W, Zhao H, Yao J, et al. Esterification of cyclohexene with formic acid over a peanut shell-derived carbon solid acid catalyst[J]. Chinese Journal of Catalysis, 2016, 37(5): 769-777. |
18 | Lu B, Wu Z W, Ma L J, Yuan X. Phosphotungstic acid immobilized on sulphonic-acid-functionalized SBA-15 as a stable catalyst for the esterification of cyclohexene with formic acid[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 1-7. |
19 | Ma L J, Xu L, Jiang H R, et al. Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid[J]. RSC Advances, 2019, 9(10): 5692-5700. |
20 | 靳敬敬, 李芳, 杨丽红, 等. HZSM-5催化乙酸环己酯水解反应[J]. 石油学报(石油加工), 2014, 30(1): 169-174. |
Jin J J, Li F, Yang L H, et al. Hydrolyzation of cyclohexyl acetate over HZSM-5 catalyst[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(1): 169-174. | |
21 | Yang F, Xue W, Zhang D, et al. Hydrolysis of cyclohexyl acetate to cyclohexanol with high selectivity over SO3H-functionalized ionic liquids[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 117(1): 1-11. |
22 | Liu Y, Liu W H, Wang L, et al. Efficient hydrolysis of cyclohexyl acetate to cyclohexanol catalyzed by dual-SO3H functionalized heteropolyacid-based solid acids[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5207-5214. |
23 | Xue W, Sun L J, Yang F, et al. Peanut shell-derived carbon solid acid with large surface area and its application for the catalytic hydrolysis of cyclohexyl acetate [J]. Materials, 2016, 9(10): 833. |
24 | 提飞, 李芳, 王志苗, 等. 无机盐在HZSM-5催化乙酸环己酯水解反应中的作用[J]. 石油学报(石油加工), 2017, 33(1): 85-90. |
Ti F, Li F, Wang Z M, et al. The role of inorganic salts in hydrolyzation of cyclohexyl acetate over HZSM-5[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(1): 85-90. | |
25 | Cai H L, Li C Z, Wang A Q, et al. Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid[J]. Applied Catalysis B Environmental, 2012, 123/124: 333-338. |
26 | Grzechowiak J R, Rynkowski J, Wereszczako-Zieliñska I. Catalytic hydrotreatment on allumina-titania supported Ni-Mo sulfides[J]. Catalysis Today, 2001, 65(2): 225-231. |
27 | 尹双凤, 林洁, 于中伟. 锌含量对Zn/HZSM-5催化剂性能的影响[J]. 催化学报, 2001, 22(1): 57-61. |
Yin S F, Lin J, Yu Z W. Effect of zinc content on properties of Zn/HZSM-5 zeolitecatalyst[J]. Chinese Journal of Catalysis, 2001, 22(1): 57-61. | |
28 | 高秀枝, 张翊, 王秀梅, 等. 脱铝HY分子筛酸中心结构与酸性的固体NMR研究[J]. 石油学报(石油加工), 2012, 28(2): 180-187. |
Gao X Z, Zhang Y, Wang X M, et al. State of acidic center andacidity of dealuminated HY zeolites investigated by solid-state NMR spectroscopy[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2012, 28(2): 180-187. | |
29 | Costas S T, Athanasios G V, Lori N, et al. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2001, 47(1): 369-388. |
30 | 黄朝晖, 刘乃旺, 姚佳佳, 等. USY分子筛表面酸性的调变及其在催化脱除芳烃中烯烃的应用[J]. 化工进展, 2016, 35(1): 138-144. |
Huang Z H, Liu N W, Yao J J, et al. Surface acid modification of zeolite and its application in removal of olefins in aromatics[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 138-144. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[7] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[8] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[9] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[10] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[11] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[12] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[13] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[14] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[15] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||