CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2128-2138.DOI: 10.11949/0438-1157.20191378
• Process system engineering • Previous Articles Next Articles
Dong LI(),Daoping HUANG,Yiqi LIU()
Received:
2019-11-13
Revised:
2020-01-18
Online:
2020-05-05
Published:
2020-05-05
Contact:
Yiqi LIU
通讯作者:
刘乙奇
作者简介:
李东(1994—),男,博士研究生,基金资助:
CLC Number:
Dong LI, Daoping HUANG, Yiqi LIU. Research on semi-supervised heterogeneous adaptive co-training soft-sensor model[J]. CIESC Journal, 2020, 71(5): 2128-2138.
李东, 黄道平, 刘乙奇. 基于协同训练的半监督异构自适应软测量建模方法的研究[J]. 化工学报, 2020, 71(5): 2128-2138.
Add to citation manager EndNote|Ris|BibTeX
异构自适应co-training RPLS-RBP混合回归模型流程 |
---|
输入: 标记样本集 训练过程: 用奇偶分配的方法将 进行 For 取最大的 End of for 达到最高迭代次数,结束迭代 输出新的标记样本集L1和L2 |
Table 1 Detailed flow of heterogeneous adaptive co-training RPLS-RBP hybrid regression model
异构自适应co-training RPLS-RBP混合回归模型流程 |
---|
输入: 标记样本集 训练过程: 用奇偶分配的方法将 进行 For 取最大的 End of for 达到最高迭代次数,结束迭代 输出新的标记样本集L1和L2 |
Labeled data rate | co-training PLS | co-training BP | co-training RRPLS-RBP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | SNH | SNO | COD | BOD5 | SS | SNH | SNO | COD | BOD5 | SS | SNH | SNO | COD | BOD5 | |
10% | 0.095 | 0.053 | 0.054 | 0.064 | 0.053 | 0.304 | 0.07 | 0.027 | 0.089 | 0.029 | 0.007 | 0.004 | 0.003 | 0.004 | 0.004 |
20% | 3.833 | 12.994 | 8.345 | 2.456 | 1.922 | 16.845 | 10.073 | 8.328 | 3.293 | 1.615 | 0.974 | 0.661 | 0.638 | 0.69 | 0.587 |
30% | 2.066 | 1.527 | 0.892 | 0.801 | 0.751 | 7.227 | 2.457 | 2.4 | 0.741 | 0.421 | 0.311 | 0.174 | 0.174 | 0.18 | 0.182 |
40% | 16.864 | 10.756 | 12.205 | 7.173 | 6.059 | 54.485 | 11.066 | 2.182 | 1.432 | 6.136 | 0.263 | 0.293 | 0.252 | 0.32 | 0.238 |
50% | 0.043 | 0.088 | 0.04 | 0.037 | 0.044 | 0.207 | 0.055 | 0.037 | 0.037 | 0.052 | 0.003 | 0.005 | 0.002 | 0.005 | 0.003 |
Table 2 RMSE values at different labeled data rate
Labeled data rate | co-training PLS | co-training BP | co-training RRPLS-RBP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | SNH | SNO | COD | BOD5 | SS | SNH | SNO | COD | BOD5 | SS | SNH | SNO | COD | BOD5 | |
10% | 0.095 | 0.053 | 0.054 | 0.064 | 0.053 | 0.304 | 0.07 | 0.027 | 0.089 | 0.029 | 0.007 | 0.004 | 0.003 | 0.004 | 0.004 |
20% | 3.833 | 12.994 | 8.345 | 2.456 | 1.922 | 16.845 | 10.073 | 8.328 | 3.293 | 1.615 | 0.974 | 0.661 | 0.638 | 0.69 | 0.587 |
30% | 2.066 | 1.527 | 0.892 | 0.801 | 0.751 | 7.227 | 2.457 | 2.4 | 0.741 | 0.421 | 0.311 | 0.174 | 0.174 | 0.18 | 0.182 |
40% | 16.864 | 10.756 | 12.205 | 7.173 | 6.059 | 54.485 | 11.066 | 2.182 | 1.432 | 6.136 | 0.263 | 0.293 | 0.252 | 0.32 | 0.238 |
50% | 0.043 | 0.088 | 0.04 | 0.037 | 0.044 | 0.207 | 0.055 | 0.037 | 0.037 | 0.052 | 0.003 | 0.005 | 0.002 | 0.005 | 0.003 |
预测变量 | co-training PLS | co-training BP | co-training RPLS-RBP | |||
---|---|---|---|---|---|---|
RMSE | R | RMSE | R | RMSE | R | |
SS | 0.053 | 0.814 | 0.029 | 0.829 | 0.004 | 0.941 |
SNH | 1.922 | 0.922 | 1.615 | 0.921 | 0.587 | 0.968 |
SNO | 0.751 | 0.917 | 0.421 | 0.935 | 0.182 | 0.973 |
COD | 6.059 | 0.947 | 6.136 | 0.753 | 0.238 | 0.979 |
BOD5 | 0.044 | 0.987 | 0.052 | 0.966 | 0.003 | 0.991 |
耗时/s | 34.368 | 58.994 | 182.318 |
Table 3 RMSE, R values and time consuming of the output variables (labeled data rate is 50%)
预测变量 | co-training PLS | co-training BP | co-training RPLS-RBP | |||
---|---|---|---|---|---|---|
RMSE | R | RMSE | R | RMSE | R | |
SS | 0.053 | 0.814 | 0.029 | 0.829 | 0.004 | 0.941 |
SNH | 1.922 | 0.922 | 1.615 | 0.921 | 0.587 | 0.968 |
SNO | 0.751 | 0.917 | 0.421 | 0.935 | 0.182 | 0.973 |
COD | 6.059 | 0.947 | 6.136 | 0.753 | 0.238 | 0.979 |
BOD5 | 0.044 | 0.987 | 0.052 | 0.966 | 0.003 | 0.991 |
耗时/s | 34.368 | 58.994 | 182.318 |
1 | 黄道平, 刘乙奇, 李艳, 等. 软测量在污水处理过程中的研究与应用[J]. 化工学报, 2011, 62(1): 1-9. |
Huang D P, Liu Y Q, Li Y, et al. Soft sensor research and its application in wastewater treatment[J]. CIESC Journal, 2011, 62(1): 1-9. | |
2 | 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J].化工学报, 2013, 64(3): 788-800. |
Cao P F, Luo X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3): 788-800. | |
3 | 汤健, 乔俊飞, 柴天佑, 等. 基于虚拟样本生成技术的多组分机械信号建模[J]. 自动化学报, 2018, 44(9): 35-55. |
Tang J, Qiao J F, Chai T Y, et al. Modeling multiple components mechanical signals by means of virtual sample generation technique[J]. Acta Automatica Sinica, 2018, 44(9): 35-55. | |
4 | Wang D, Liu J, Srinivasan R. Data-driven soft sensor approach for quality prediction in a refining process[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 11-17. |
5 | Chao S, Fan Y, Huang D, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3): 223–233. |
6 | 谢代梁, 王保良, 黄志尧, 等. 主成分回归在中药过程软测量中的应用研究[J]. 仪器仪表学报, 2004, 25(z3): 671-672. |
Xie D Y, Wang B L, Huang Z Y, et al. Application of principle component regression to soft-sensing of Chinese traditional medicine production process[J]. Chinese Journal of Scientific Instrument, 2004, 25(z3): 671-672. | |
7 | 刘瑞兰, 徐艳, 戎舟. 基于稀疏最小二乘支持向量机的软测量建模[J]. 化工学报, 2015, 66(4): 1402-1406. |
Liu R L, Xu Y, Rong Z. Modeling soft sensor based on sparse least square support vector machine[J]. CIESC Journal, 2015, 66(4): 1402-1406. | |
8 | Liu Y, Xiao H, Pan Y, et al. Development of multiple-step soft-sensors using a Gaussian process model with application for fault prognosis[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 157: 85-95. |
9 | 马建, 邓晓刚, 王磊. 基于深度集成支持向量机的工业过程软测量方法[J]. 化工学报, 2018, 69(3): 1121-1128. |
Ma J, Deng X G, Wang L. Industrial process soft sensor method based on deep learning ensemble support vector machine[J]. CIESC Journal, 2018, 69(3): 1121-1128. | |
10 | Liu Y Q, Liu B, Zhao X J, et al. Development of RVM-based multiple-output soft sensors with serial and parallel stacking strategies[J]. IEEE Transactions on Control Systems Technology2018, 27(6): 2727 - 2734. |
11 | Yao L, Ge Z Q. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics. 2017, 65(2): 1490-1498. |
12 | Yuan X F, Ge Z Q, Huang B, et al. Semisupervised JITL framework for nonlinear industrial soft sensing based on locally semisupervised weighted PCR[J]. IEEE Transactions on Industrial Informatics. 2016, 13(2): 532-541. |
13 | Zhong W M, Jiang C, Peng X, et al. Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow-feature analysis[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9604-9614. |
14 | Tu E, Zhang Y, Zhu L, et al. A graph-based semi-supervised k nearest-neighbor method for nonlinear manifold distributed data classification[J]. Information Sciences, 2016, 367/368: 673-688. |
15 | Li C, Zhu J, Bo Z. Max-margin deep generative models for (semi-)supervised learning[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40(11): 2672-2775. |
16 | Shi Y, Yao K, Hu C, et al. Semi-supervised slot tagging in spoken language understanding using recurrent transductive support vector machines[C]//2015 IEEE Workshop on Automatic Speech Recognition & Understanding. Scottsdale, AZ, USA, 2016. |
17 | Tanha J, Someren M V, Afsarmanesh H. Semi-supervised self-training for decision tree classifiers[J]. International Journal of Machine Learning & Cybernetics, 2017, 8(1): 355-370. |
18 | Zhan Y Z, Chen Y B. Co-training semi-supervised active learning algorithm with noise filter[J]. Pattern Recognition & Artificial Intelligence, 2009, 22(5): 750-755. |
19 | Zhou Z H, Li M. Semi-supervised regression with co-training[C]//Proceeding of the 19th International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers Inc., 2005. |
20 | Bao L, Yuan Y F, Ge Z Q. Co-training partial least squares model for semi-supervised soft sensor development[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 147: 75-85. |
21 | Goldman S, Zhou Y. Enhancing supervised learning with unlabeled data[C]// Proceedings of the Seventeenth International Conference on Machine Learning. 2000. |
22 | Nigam K, Ghani R. Analyzing the effectiveness and applicability of co-training[C]//International Conference on Information & Knowledge Management. 2000. |
23 | Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(11): 1529-1541. |
24 | 徐欧官, 陈祥华, 傅永峰, 等. 基于模型性能评估的递推PLS建模及应用[J]. 化工学报, 2014, 65(12): 4875-4882. |
Xu O G, Chen X H, Fu Y F, et al. Recursive PLS modeling based on model performance assessment and its application[J]. CIESC Journal, 2014, 65(12): 4875-4882. | |
25 | Yang J X, Zhou J T. Prediction of chaotic time series of bridge monitoring system based on multi-step recursive BP neural network[J]. Advanced Materials Research, 2011, 159: 138-143. |
26 | 周云龙, 孙斌, 陆军, 等. 改进BP神经网络在气液两相流流型识别中的应用[J]. 化工学报, 2005, 56(1): 110-115. |
Zhou Y L, Sun B, Lu J, et al. Application of improved BP neural network in identification of air-water two-phase flow patterns[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(1): 110-115. | |
27 | Zhu F G, Lu Y Z. A new recursive learning algorithm of Bp. network[C]// Singapore International Conference on Intelligent Control and Instrumentation. Singapore, 1992. |
28 | Xu J, He H, Man H. DCPE co-training for classification[J]. Neurocomputing, 2012, 86(4): 75-85. |
29 | He H T, Luo X N, Ma F T, et al. Network traffic classification based on ensemble learning and co-training[J]. Science in China(Series F), 2009, 52(2): 338-346. |
30 | Li X M, Lu H L, Yang J H, et al. Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples[J]. Plasma Science and Technology, 2018, 21(3): 034015. |
31 | Liu Y Q, Liu B, Zhao X J, et al. A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6478-6486. |
32 | Wang G, Wu J, Yin S, et al. Comparison between BP neural network and multiple linear regression method[C]//Proceeding of the First International Conference on Information Computing and Applications. 2010. |
33 | Liu Y, Pan Y, Huang D. Development of a novel adaptive soft-sensor using variational Bayesian PLS with accounting for online identification of key variables[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 338-350. |
34 | 吴菁, 刘乙奇, 刘坚, 等. 基于动态多核相关向量机的软测量建模研究[J]. 化工学报, 2019, 70(4): 237-249. |
Wu J, Liu Y Q, Liu J, et al. Study on the soft sensor of multi-kernel relevance vector machine based on time difference[J]. CIESC Journal, 2019, 70(4): 237-249. | |
35 | Liu Y, Huang D, Li Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3356-3367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||