CIESC Journal ›› 2018, Vol. 69 ›› Issue (12): 5130-5138.DOI: 10.11949/j.issn.0438-1157.20180365
Previous Articles Next Articles
CUI Xiaohui, YANG Jian, SHI Hongbo
Received:
2018-04-03
Revised:
2018-08-13
Online:
2018-12-05
Published:
2018-12-05
Supported by:
supported by the National Natural Science Foundation of China (61374140, 61673173) and the Fundamental Research Funds for the Central Universities (222201714031, 222201717006).
崔晓惠, 杨健, 侍洪波
通讯作者:
侍洪波
基金资助:
国家自然科学基金项目(61374140,61673173);中央高校基本科研业务费专项资金项目(222201714031);中央高校基本科研业务费重点科研基地创新基金项目(222201717006)。
CLC Number:
CUI Xiaohui, YANG Jian, SHI Hongbo. Quality-related process monitoring approach based on semi-supervised orthogonal factor analysis[J]. CIESC Journal, 2018, 69(12): 5130-5138.
崔晓惠, 杨健, 侍洪波. 基于半监督正交因子分析的过程质量监控方法[J]. 化工学报, 2018, 69(12): 5130-5138.
[1] | GE Z Q, SONG Z H, DING S X, et al. Data mining and analytics in the process industry:the role of machine learning[J]. IEEE Access, 2017, 5(99):20590-20616. |
[2] | LV Z M, YAN X F, JIANG Q C, et al. Batch process monitoring based on self-adaptive subspace support vector data description[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 170:25-31. |
[3] | 胡婷婷, 王帆, 侍洪波. 基于变量概率信息的因子分析监控方法[J]. 化工学报, 2017, 68(7):2844-2850. HU T T, WANG F, SHI H B. Factor analysis process monitoring method based on probabilistic information of variables[J]. CIESC Journal, 2017, 68(7):2844-2850. |
[4] | RAVEENDRAN R, HUANG B. Mixture probabilistic PCA for process monitoring-collapsed variational Bayesian approach[J]. IFAC-PapersOnLine, 2016, 49(7):1032-1037. |
[5] | YUAN X F, YE L J, BAO L, et al. Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 147:167-175. |
[6] | ZHAO Z G, LI Q H, HUANG B, et al. Process monitoring based on factor analysis:probabilistic analysis of monitoring statistics in presence of both complete and incomplete measurements[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 142:18-27. |
[7] | YAO L, GE Z Q. Moving window adaptive soft sensor for state shifting process based on weighted supervised latent factor analysis[J]. Control Engineering Practice, 2017, 61:72-80. |
[8] | QIN S J. Survey on data-driven industrial process monitoring and monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234. |
[9] | LV Z M, YAN X F. Hierarchical support vector data description for batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2016, 55(34):9205-9214. |
[10] | KIM D, LEE I B. Process monitoring based on probabilistic PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2003, 67(2):109-123. |
[11] | JUNG J H, YOO C K, KIM D S, et al. Calibration, prediction and process monitoring model based on factor analysis for incomplete process data[J]. Journal of Chemical Engineering of Japan, 2005, 38(12):1025-1034. |
[12] | ZHOU L, CHEN J H, SONG Z H, et al. Probabilistic latent variable regression model for process-quality monitoring[J]. Chemical Engineering Science, 2014, 116:296-305. |
[13] | GE Z Q, GAO F R, SONG Z H. Mixture probabilistic PCR model for soft sensing of multimode processes[J]. Chemometrics & Intelligent Laboratory Systems, 2011, 105(1):91-105. |
[14] | GE Z Q. Supervised latent factor analysis for process data regression modeling and soft sensor application[J]. IEEE Transactions on Control Systems Technology, 2016, 24(3):1004-1011. |
[15] | ZHOU L, CHEN J H, SONG Z H, et al. Semi-supervised PLVR models for process monitoring with unequal sample sizes of process variables and quality variables[J]. Journal of Process Control, 2015, 26:1-16. |
[16] | ZHU J L, GE Z Q, SONG Z H. Robust semi-supervised mixture probabilistic principal component regression model development and application to soft sensors[J]. Journal of Process Control, 2015, 32:25-37. |
[17] | 陈家益, 赵忠盖, 刘飞. 半监督鲁棒概率偏最小二乘模型及其在多采样率过程监控中的应用[J]. 信息与控制, 2017, 46(6):712-719. CHEN J Y, ZHAO Z G, LIU F. Semi-supervised robust probabilistic partial least squares model and its applications to multi-rate process monitoring[J]. Information and Control, 2017, 46(6):712-719. |
[18] | 周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3):1109-1115. ZHOU L, SONG Z H, HOU B P, et al. Robust semi-supervised modelling method and its application to fault detection in chemical processes[J]. CIESC Journal, 2017, 68(3):1109-1115. |
[19] | TIPPING M E, BISHOP C M. Mixtures of probabilistic principal component analyzers[J]. Neural Computation, 1997, 11(2):443-482. |
[20] | 尹雪岩, 刘飞. 独立因子分析方法在过程监控中的应用[J]. 计算机与应用化学, 2010, 27(10):1353-1356. YIN X Y, LIU F. Process monitoring and application based on independent factor analysis[J]. Computers and Applied Chemistry, 2010, 27(10):1353-1356. |
[21] | YIN S, ZHU X, KAYNAK O. Improved PLS focused on key-performance-indicator-related fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1651-1658. |
[22] | WANG G, YIN S. Quality-related fault detection approach based on orthogonal signal correction and modified PLS[J]. IEEE Transactions on Industrial Informatics, 2017, 11(2):398-405. |
[23] | CHEN Q, WYNNE R J, GOULDING P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5):531-543. |
[24] | 杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12):5131-5139. YANG J, SONG B, TAN S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12):5131-5139. |
[25] | 王帆, 杨雅伟, 谭帅, 等. 基于稀疏性非负矩阵分解的故障监测方法[J]. 化工学报, 2015, 66(5):1798-1805. WANG F, YANG Y W, TAN S, et al. Fault detection method based on sparse non-negative matrix factorization[J]. CIESC Journal, 2015, 66(5):1798-1805. |
[26] | BOX G E P. Some theorems on quadratic forms applied in the study of analysis of variance problems (Ⅰ):Effect of inequality of variance in the one-way classification[J]. Annals of Mathematical Statistics, 1954, 25(2):290-302. |
[27] | ZHOU L, SONG Z H, GE Z Q, et al. Dynamic process monitoring based on probabilistic principle component regression[C]//Chinese Control and Decision Conference. 2013:4763-4767. |
[28] | ALCALA C F, QIN S J. Reconstruction-based contribution for process monitoring[J]. Automatica, 2009, 45(7):1593-1600. |
[29] | DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255. |
[30] | CHIANG L H, RUSSELL E L, BRAATZ R D. Fault Detection and Diagnosis in Industrial Systems[M]. London:Springer, 2001:103-109. |
[31] | SONG B, TAN S, SHI H B. Process monitoring via enhanced neighborhood preserving embedding[J]. Control Engineering Practice, 2016, 50:48-56. |
[32] | YANG J, ZHANG M S, SHI H B, et al. Dynamic learning on the manifold with constrained time information and its application for dynamic process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 167:179-189. |
[33] | ZHOU D, LI G, QIN S J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1):168-178. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[7] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[8] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[9] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[10] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[11] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[12] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[13] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[14] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[15] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 451
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 460
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||