[1] |
GE Z Q, SONG Z H, DING S X, et al. Data mining and analytics in the process industry:the role of machine learning[J]. IEEE Access, 2017, 5(99):20590-20616.
|
[2] |
LV Z M, YAN X F, JIANG Q C, et al. Batch process monitoring based on self-adaptive subspace support vector data description[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 170:25-31.
|
[3] |
胡婷婷, 王帆, 侍洪波. 基于变量概率信息的因子分析监控方法[J]. 化工学报, 2017, 68(7):2844-2850. HU T T, WANG F, SHI H B. Factor analysis process monitoring method based on probabilistic information of variables[J]. CIESC Journal, 2017, 68(7):2844-2850.
|
[4] |
RAVEENDRAN R, HUANG B. Mixture probabilistic PCA for process monitoring-collapsed variational Bayesian approach[J]. IFAC-PapersOnLine, 2016, 49(7):1032-1037.
|
[5] |
YUAN X F, YE L J, BAO L, et al. Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 147:167-175.
|
[6] |
ZHAO Z G, LI Q H, HUANG B, et al. Process monitoring based on factor analysis:probabilistic analysis of monitoring statistics in presence of both complete and incomplete measurements[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 142:18-27.
|
[7] |
YAO L, GE Z Q. Moving window adaptive soft sensor for state shifting process based on weighted supervised latent factor analysis[J]. Control Engineering Practice, 2017, 61:72-80.
|
[8] |
QIN S J. Survey on data-driven industrial process monitoring and monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234.
|
[9] |
LV Z M, YAN X F. Hierarchical support vector data description for batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2016, 55(34):9205-9214.
|
[10] |
KIM D, LEE I B. Process monitoring based on probabilistic PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2003, 67(2):109-123.
|
[11] |
JUNG J H, YOO C K, KIM D S, et al. Calibration, prediction and process monitoring model based on factor analysis for incomplete process data[J]. Journal of Chemical Engineering of Japan, 2005, 38(12):1025-1034.
|
[12] |
ZHOU L, CHEN J H, SONG Z H, et al. Probabilistic latent variable regression model for process-quality monitoring[J]. Chemical Engineering Science, 2014, 116:296-305.
|
[13] |
GE Z Q, GAO F R, SONG Z H. Mixture probabilistic PCR model for soft sensing of multimode processes[J]. Chemometrics & Intelligent Laboratory Systems, 2011, 105(1):91-105.
|
[14] |
GE Z Q. Supervised latent factor analysis for process data regression modeling and soft sensor application[J]. IEEE Transactions on Control Systems Technology, 2016, 24(3):1004-1011.
|
[15] |
ZHOU L, CHEN J H, SONG Z H, et al. Semi-supervised PLVR models for process monitoring with unequal sample sizes of process variables and quality variables[J]. Journal of Process Control, 2015, 26:1-16.
|
[16] |
ZHU J L, GE Z Q, SONG Z H. Robust semi-supervised mixture probabilistic principal component regression model development and application to soft sensors[J]. Journal of Process Control, 2015, 32:25-37.
|
[17] |
陈家益, 赵忠盖, 刘飞. 半监督鲁棒概率偏最小二乘模型及其在多采样率过程监控中的应用[J]. 信息与控制, 2017, 46(6):712-719. CHEN J Y, ZHAO Z G, LIU F. Semi-supervised robust probabilistic partial least squares model and its applications to multi-rate process monitoring[J]. Information and Control, 2017, 46(6):712-719.
|
[18] |
周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3):1109-1115. ZHOU L, SONG Z H, HOU B P, et al. Robust semi-supervised modelling method and its application to fault detection in chemical processes[J]. CIESC Journal, 2017, 68(3):1109-1115.
|
[19] |
TIPPING M E, BISHOP C M. Mixtures of probabilistic principal component analyzers[J]. Neural Computation, 1997, 11(2):443-482.
|
[20] |
尹雪岩, 刘飞. 独立因子分析方法在过程监控中的应用[J]. 计算机与应用化学, 2010, 27(10):1353-1356. YIN X Y, LIU F. Process monitoring and application based on independent factor analysis[J]. Computers and Applied Chemistry, 2010, 27(10):1353-1356.
|
[21] |
YIN S, ZHU X, KAYNAK O. Improved PLS focused on key-performance-indicator-related fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1651-1658.
|
[22] |
WANG G, YIN S. Quality-related fault detection approach based on orthogonal signal correction and modified PLS[J]. IEEE Transactions on Industrial Informatics, 2017, 11(2):398-405.
|
[23] |
CHEN Q, WYNNE R J, GOULDING P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5):531-543.
|
[24] |
杨健, 宋冰, 谭帅, 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016, 67(12):5131-5139. YANG J, SONG B, TAN S, et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016, 67(12):5131-5139.
|
[25] |
王帆, 杨雅伟, 谭帅, 等. 基于稀疏性非负矩阵分解的故障监测方法[J]. 化工学报, 2015, 66(5):1798-1805. WANG F, YANG Y W, TAN S, et al. Fault detection method based on sparse non-negative matrix factorization[J]. CIESC Journal, 2015, 66(5):1798-1805.
|
[26] |
BOX G E P. Some theorems on quadratic forms applied in the study of analysis of variance problems (Ⅰ):Effect of inequality of variance in the one-way classification[J]. Annals of Mathematical Statistics, 1954, 25(2):290-302.
|
[27] |
ZHOU L, SONG Z H, GE Z Q, et al. Dynamic process monitoring based on probabilistic principle component regression[C]//Chinese Control and Decision Conference. 2013:4763-4767.
|
[28] |
ALCALA C F, QIN S J. Reconstruction-based contribution for process monitoring[J]. Automatica, 2009, 45(7):1593-1600.
|
[29] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[30] |
CHIANG L H, RUSSELL E L, BRAATZ R D. Fault Detection and Diagnosis in Industrial Systems[M]. London:Springer, 2001:103-109.
|
[31] |
SONG B, TAN S, SHI H B. Process monitoring via enhanced neighborhood preserving embedding[J]. Control Engineering Practice, 2016, 50:48-56.
|
[32] |
YANG J, ZHANG M S, SHI H B, et al. Dynamic learning on the manifold with constrained time information and its application for dynamic process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 167:179-189.
|
[33] |
ZHOU D, LI G, QIN S J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1):168-178.
|