CIESC Journal ›› 2018, Vol. 69 ›› Issue (7): 3083-3091.DOI: 10.11949/j.issn.0438-1157.20171488

Previous Articles     Next Articles

Fault classification based on semi-supervised dense ladder network

SHI Fangyi, WANG Ziyang, LIANG Jun   

  1. State Key Laboratory of Industrial Control Technology, Institute of Industrial Control, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2017-11-08 Revised:2018-03-21 Online:2018-07-05 Published:2018-07-05
  • Supported by:

    supported by the National Natural Science Foundation of China (U1664264,U1509203).

基于半监督密集阶梯网络的工业故障识别

施方迤, 汪子扬, 梁军   

  1. 浙江大学工业控制研究所, 工业控制技术国家重点实验室, 浙江 杭州 310027
  • 通讯作者: 梁军
  • 基金资助:

    国家自然科学基金项目(U1664264,U1509203)。

Abstract:

To meet the needs of fault identification and imbalanced dataset in actual industrial processes, a semisupervised deep learning method was proposed for fault classification. The enhanced semi-supervised ladder network, i.e., semi-supervised dense ladder network, was developed by improving network architecture and loss function. Dense connection strategy was applied in the network architecture to maximize information flow between layers of the ladder network, such that features among layers could be transmitted and copied. Meanwhile, to ensure consistency between training target and prediction output, prediction output loss of corrupted encoder was added into original loss function. Experiment results illustrated the proposed method could achieve ideal classification in small ratio marked dataset in actual industrial process.

Key words: semi-supervised learning, ladder network, dense connection, fault classification, algorithm, neural networks, optimization, auto encoder

摘要:

针对工业过程故障识别的需要和实际工业数据小比例有标签、大比例无标签的特点,研究了基于深度学习的半监督故障分类方法。在半监督阶梯网络的基础上,通过对网络结构和损失函数的改进,提出了半监督密集阶梯网络算法。该算法改进了原始的网络结构,添加了各层之间的密集连接,尝试最大化阶梯网络内部的数据信息流,使得各编码解码层之间的特征得以传递和复用。针对损失函数的特点,添加了无噪声编码层的预测输出损失,确保训练目标与模型输出一致。实验结果证明了所提出的新方法能在工业过程的小比例有标签数据情况下,获得理想的分类效果。

关键词: 半监督学习, 阶梯网络, 密集连接, 工业故障分类, 算法, 神经网络, 优化, 自编码器

CLC Number: