[1] |
QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234.
|
[2] |
刘强, 柴天佑, 秦泗钊,等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010, 25(6):801-807. LIU Q, CHAI T Y, QIN S J, et al. Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process[J]. Control and Decision, 2010, 25(6):801-807.
|
[3] |
GE Z, SONG Z,GAO F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
|
[4] |
YIN S, DING S X, XIE X, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6418-6428.
|
[5] |
LI W, YUE H H, VALLE-CERVANTES S, et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control, 2000, 10(5):471-486.
|
[6] |
YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9):1567-1581.
|
[7] |
WOODALL W H, MONTGOMERY D C. Some current directions in the theory and application of statistical process monitoring[J]. Journal of Quality Technology, 2014, 46(1):78.
|
[8] |
QIN S J. Statistical process monitoring:basics and beyond[J]. Journal of Chemometrics, 2003, 17(8/9):480-502.
|
[9] |
MACGREGOR J F, JAECKLE C, KIPARISSIDES C, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE Journal, 1994, 40(5):826-838.
|
[10] |
CHEN J, LIU K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chemical Engineering Science, 2002, 57(1):63-75.
|
[11] |
LI G, QIN S J, ZHOU D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46(1):204-210.
|
[12] |
ZHOU D, LI G, QIN S J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1):168-178.
|
[13] |
FACCO P, DOPLICHER F, BEZZO F, et al. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process[J]. Journal of Process Control, 2009, 19(3):520-529.
|
[14] |
MARJANOVIC O, LENNOX B, SANDOZ D, et al. Real-time monitoring of an industrial batch process[J]. Computers & Chemical Engineering, 2006, 30(10/11/12):1476-1481.
|
[15] |
ZHU X, GHAHRAMANI Z, LAFFERTY J. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions[M]. ICML, 2003.
|
[16] |
MURPHY K P. Machine Learning:A Probabilistic Perspective[M]. The MIT Press, 2012.
|
[17] |
ZHOU L, CHEN J, SONG Z, et al. Semi-supervised PLVR models for process monitoring with unequal sample sizes of process variables and quality variables[J]. Journal of Process Control, 2015, 26:1-16.
|
[18] |
ZHU J, GE Z, SONG Z. Robust semi-supervised mixture probabilistic principal component regression model development and application to soft sensors[J]. Journal of Process Control, 2015, 32:25-37.
|
[19] |
STANIMIROVA I, DASZYKOWSKI M, WALCZAK B. Dealing with missing values and outliers in principal component analysis[J]. Talanta, 2007, 72(1):172-178.
|
[20] |
CHEN T, MARTIN E, MONTAGUE G. Robust probabilistic PCA with missing data and contribution analysis for outlier detection[J]. Computational Statistics & Data Analysis, 2009, 53(10):3706-3716.
|
[21] |
ZHU J, GE Z, SONG Z. Robust modeling of mixture probabilistic principal component analysis and process monitoring application[J]. AIChE Journal, 2014, 60(6):2143-2157.
|
[22] |
LEE J M, YOO C, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-23
|
[23] |
CHO J H, LEE J M, CHOI S W, et al. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 60(1):279-288.
|
[24] |
HU Y, MA H, SHI H. Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 123:15-27.
|
[25] |
YUAN X, YE L, BAO L, et al. Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 147:167-175.
|
[26] |
BOX G E. Some theorems on quadratic forms applied in the study of analysis of variance problems(Ⅰ):Effect of inequality of variance in the one-way classification[J]. The Annals of Mathematical Statistics, 1954, 25(2):290-302.
|
[27] |
KANO M, NAGAO K, HASEBE S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chemical Engineering, 2002, 26(2):161-174.
|
[28] |
KU W, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):179-196.
|
[29] |
LYMAN P R, GEORGAKIS C. Plant-wide control of the Tennessee Eastman problem[J]. Computers & Chemical Engineering, 1995, 19(3):321-331.
|
[30] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[31] |
CHIANG L H, BRAATZ R D, RUSSELL E L. Fault Detection and Diagnosis in Industrial Systems[M]. Springer, 2001.
|