CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3201-3212.DOI: 10.11949/0438-1157.20191531

• Process system engineering • Previous Articles     Next Articles

Model predictive control of nonlinear system based on adaptive fuzzy neural network

Hongbiao ZHOU(),Yu ZHANG,Xiaoying BAI,Baolian LIU,Huanyu ZHAO   

  1. Faculty of Automation, Huaiyin Institute of Technology, Huai’an 223003, Jiangsu, China
  • Received:2019-12-20 Revised:2020-02-22 Online:2020-07-05 Published:2020-07-05
  • Contact: Hongbiao ZHOU

基于自适应模糊神经网络的非线性系统模型预测控制

周红标(),张钰,柏小颖,刘保连,赵环宇   

  1. 淮阴工学院自动化学院,江苏 淮安 223003
  • 通讯作者: 周红标
  • 作者简介:周红标(1980—),男,博士,讲师,hyitzhb@hyit.edu.cn
  • 基金资助:
    国家自然科学基金项目(61873107);江苏省“333”工程(BRA2019285)

Abstract:

Aiming at the control problem of nonlinear dynamic systems, a model predictive control (MPC) method based on adaptive fuzzy neural network (AFNN) was proposed. First, in the offline modeling phase, a rule automatic splitting technique is used to generate initial fuzzy rules, and an improved adaptive LM learning algorithm is adopted to optimize network parameters. Second, in the real-time control process, the network parameters of the AFNN are adjusted according to the error between the system output and the predicted output, so that providing an accurate prediction model for the MPC. Furthermore, the gradient descent optimization algorithm with adaptive learning rate is used to solve optimization problem and obtain the nonlinear control law online, which is applied to control the dynamic system. In addition, the convergence and stability analysis of the proposed AFNN-MPC are given to ensure its successful application in practical engineering. Finally, numerical simulation and two-CSTR process experiments are used to verify the effectiveness of AFNN-MPC algorithm. The results show that the proposed AFNN-MPC has superior control performance.

Key words: nonlinear systems, dynamic modeling, model predictive control, process control, fuzzy neural network, adaptive learning rate

摘要:

针对非线性动态系统的控制问题,提出了一种基于自适应模糊神经网络(adaptive fuzzy neural network, AFNN)的模型预测控制(model predictive control, MPC)方法。首先,在离线建模阶段,AFNN采用规则自分裂技术产生初始模糊规则,采用改进的自适应LM学习算法优化网络参数;然后,在实时控制过程,AFNN根据系统输出和预测输出之间的误差调整网络参数,从而为MPC提供一个精确的预测模型;进一步,AFNN-MPC利用带有自适应学习率的梯度下降寻优算法求解优化问题,在线获取非线性控制量,并将其作用到动态系统实施控制。此外,给出了AFNN-MPC的收敛性和稳定性证明,以保证其在实际工程中的成功应用。最后,利用数值仿真和双CSTR过程进行实验验证。结果表明,AFNN-MPC能够取得优越的控制性能。

关键词: 非线性系统, 动态建模, 模型预测控制, 过程控制, 模糊神经网络, 自适应学习率

CLC Number: