CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 747-758.DOI: 10.11949/0438-1157.20210953
• Process system engineering • Previous Articles Next Articles
Xingshuo ZHANG(),Xionglin LUO(),Feng XU
Received:
2021-07-09
Revised:
2021-11-01
Online:
2022-02-18
Published:
2022-02-05
Contact:
Xionglin LUO
通讯作者:
罗雄麟
作者简介:
张兴硕(1994—),男,硕士研究生,基金资助:
CLC Number:
Xingshuo ZHANG, Xionglin LUO, Feng XU. Simulation closer to commercial process and prior process analysis based control loop configuration of FCCU reactor-regenerator system[J]. CIESC Journal, 2022, 73(2): 747-758.
张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758.
Add to citation manager EndNote|Ris|BibTeX
参数/变量 | 数值 | 单位 |
---|---|---|
新鲜原料进料量 | 85 | t·h-1 |
原料预热温度 | 220 | ℃ |
回炼油流量 | 12.75 | t·h-1 |
回炼油浆流量 | 7.25 | t·h-1 |
烧焦罐主风量 | 49340 | m3·h-1 |
二密相床主风量 | 6658 | m3·h-1 |
烧焦罐催化剂藏量 | 24 | t |
二密相床催化剂藏量 | 5 | t |
汽提段催化剂藏量 | 5 | t |
一氧化碳助燃剂投放比 | 0.004 | %(质量) |
提升管高度 | 32 | m |
提升管截面积 | 0.636 | m2 |
烧焦罐高度 | 9.810 | m |
烧焦罐截面积 | 19.625 | m2 |
烧焦罐温升 | ~39 | ℃ |
烧焦罐底部温度 | ~656 | ℃ |
提升管底部温度 | ~544 | ℃ |
提升管温降 | ~50 | ℃ |
Table 1 Some relevant parameters of the model
参数/变量 | 数值 | 单位 |
---|---|---|
新鲜原料进料量 | 85 | t·h-1 |
原料预热温度 | 220 | ℃ |
回炼油流量 | 12.75 | t·h-1 |
回炼油浆流量 | 7.25 | t·h-1 |
烧焦罐主风量 | 49340 | m3·h-1 |
二密相床主风量 | 6658 | m3·h-1 |
烧焦罐催化剂藏量 | 24 | t |
二密相床催化剂藏量 | 5 | t |
汽提段催化剂藏量 | 5 | t |
一氧化碳助燃剂投放比 | 0.004 | %(质量) |
提升管高度 | 32 | m |
提升管截面积 | 0.636 | m2 |
烧焦罐高度 | 9.810 | m |
烧焦罐截面积 | 19.625 | m2 |
烧焦罐温升 | ~39 | ℃ |
烧焦罐底部温度 | ~656 | ℃ |
提升管底部温度 | ~544 | ℃ |
提升管温降 | ~50 | ℃ |
变量 | REGA各输入对输出的值 | |||
---|---|---|---|---|
Vrg1 | Vrg2 | Tfresh | Xs | |
ya | -3.3962 | 6.8343 | 3.3282 | -5.7663 |
yd | 0.1126 | -2.4226 | 0.6199 | 2.6902 |
?Trg1 | -0.9462 | -0.1789 | -2.4691 | 4.5941 |
5.2298 | -3.2328 | -0.4790 | -0.5180 |
Table 2 Results of REGA based on prior process analysis
变量 | REGA各输入对输出的值 | |||
---|---|---|---|---|
Vrg1 | Vrg2 | Tfresh | Xs | |
ya | -3.3962 | 6.8343 | 3.3282 | -5.7663 |
yd | 0.1126 | -2.4226 | 0.6199 | 2.6902 |
?Trg1 | -0.9462 | -0.1789 | -2.4691 | 4.5941 |
5.2298 | -3.2328 | -0.4790 | -0.5180 |
操纵变量 | 被控变量 |
---|---|
再生器内循环滑阀开度 | 二密相床催化剂藏量 |
待生滑阀开度 | 汽提段催化剂藏量 |
富气压缩机转速 | 沉降器压力 |
再生烟气双动滑阀开度 | 两器压差 |
再生滑阀开度 | 反应温度 |
Table 3 Results of variable pairs
操纵变量 | 被控变量 |
---|---|
再生器内循环滑阀开度 | 二密相床催化剂藏量 |
待生滑阀开度 | 汽提段催化剂藏量 |
富气压缩机转速 | 沉降器压力 |
再生烟气双动滑阀开度 | 两器压差 |
再生滑阀开度 | 反应温度 |
变量 | REGA各输入对输出的值 | ||||||||
---|---|---|---|---|---|---|---|---|---|
16.9541 | -8.6770 | 0.0010 | -0.0021 | 0 | -6.8301 | -0.4458 | 0 | 0.0001 | |
1.8916 | -0.0314 | 0.0333 | -0.1509 | 0 | -0.7135 | -0.0294 | 0 | 0.0003 | |
8.4093 | -2.6479 | 4.0771 | -5.4763 | 0 | -3.1971 | -0.2143 | 0 | 0.0496 | |
-12.225 | 0.0015 | -0.0970 | 6.4739 | 0.0004 | 6.4716 | 0.3743 | 0 | 0.0015 | |
-0.0008 | 0.0028 | 0 | 0.0008 | 0.9968 | 0 | 0.0005 | 0 | 0 | |
-0.1253 | 2.6651 | -2.9871 | 0.1049 | 0 | 1.2560 | 0.0864 | 0 | 0.0001 | |
-13.863 | 9.6794 | -0.0153 | 0.0205 | 0.0028 | 3.9860 | 1.1907 | 0 | -0.0001 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9999 | 0 | |
-0.0388 | 0.0076 | -0.0118 | 0.0294 | 0 | 0.0273 | 0.0379 | 0 | 0.9486 |
Table 4 Results of REGA
变量 | REGA各输入对输出的值 | ||||||||
---|---|---|---|---|---|---|---|---|---|
16.9541 | -8.6770 | 0.0010 | -0.0021 | 0 | -6.8301 | -0.4458 | 0 | 0.0001 | |
1.8916 | -0.0314 | 0.0333 | -0.1509 | 0 | -0.7135 | -0.0294 | 0 | 0.0003 | |
8.4093 | -2.6479 | 4.0771 | -5.4763 | 0 | -3.1971 | -0.2143 | 0 | 0.0496 | |
-12.225 | 0.0015 | -0.0970 | 6.4739 | 0.0004 | 6.4716 | 0.3743 | 0 | 0.0015 | |
-0.0008 | 0.0028 | 0 | 0.0008 | 0.9968 | 0 | 0.0005 | 0 | 0 | |
-0.1253 | 2.6651 | -2.9871 | 0.1049 | 0 | 1.2560 | 0.0864 | 0 | 0.0001 | |
-13.863 | 9.6794 | -0.0153 | 0.0205 | 0.0028 | 3.9860 | 1.1907 | 0 | -0.0001 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9999 | 0 | |
-0.0388 | 0.0076 | -0.0118 | 0.0294 | 0 | 0.0273 | 0.0379 | 0 | 0.9486 |
控制回路 | ||
---|---|---|
两器压差控制 | 15 | 250 |
反应温度控制 | 0.5 | 1 |
Table 5 Controller parameters of original model
控制回路 | ||
---|---|---|
两器压差控制 | 15 | 250 |
反应温度控制 | 0.5 | 1 |
控制回路 | |||
---|---|---|---|
两器压差控制 | 10 | 10 | 25 |
反应温度控制 | 0.1 | 1.5 | 5 |
Table 6 Controller parameters of refined model
控制回路 | |||
---|---|---|---|
两器压差控制 | 10 | 10 | 25 |
反应温度控制 | 0.1 | 1.5 | 5 |
1 | 陈俊武, 卢捍卫. 催化裂化在炼油厂中的地位和作用展望: 催化裂化仍将发挥主要作用[J]. 石油学报(石油加工), 2003, 19(1): 1-11. |
Chen J W, Lu H W. Prospects of status and role of FCC in refinery: FCC will continue to play a leading role in petroleum refining industry[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2003, 19(1): 1-11. | |
2 | Weekman V W. A model of catalytic cracking conversion in fixed, moving, and fluid-bed reactors[J]. Industrial & Engineering Chemistry Process Design and Development, 1968, 7(1):90-95. |
3 | Lee L S, Chen Y W, Huang T N, et al. Four-lump kinetic model for fluid catalytic cracking process[J]. The Canadian Journal of Chemical Engineering, 1989, 67(4): 615-619. |
4 | Ancheyta-Juárez J, López-Isunza F, Aguilar-Rodrı́guez E. 5-Lump kinetic model for gas oil catalytic cracking[J]. Applied Catalysis A: General, 1999, 177(2): 227-235. |
5 | Hagelberg P, Eilos I, Hiltunen J, et al. Kinetics of catalytic cracking with short contact times[J]. Applied Catalysis A: General, 2002, 223(1/2): 73-84. |
6 | Takatsuka T, Sato S, Morimoto Y, et al. Reaction model for fluidized-bed catalytic cracking of residual oil[J]. International Chemical Engineering, 1987, 27(1): 107-116. |
7 | Jacob S M, Gross B, Voltz S E, et al. A lumping and reaction scheme for catalytic cracking[J]. AIChE Journal, 1976, 22(4): 701-713. |
8 | Marshall J E, Ward T J. Control of time-delay systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1981, 11(7): 515. |
9 | 罗雄麟, 赵晗, 许锋. TE过程闪蒸罐双时间尺度建模与动态特性分析[J]. 化工学报, 2015, 66(1): 186-196. |
Luo X L, Zhao H, Xu F. Two-time scale modeling and dynamic characteristics analysis of flash tank in TE process[J]. CIESC Journal, 2015, 66(1): 186-196. | |
10 | Bristol E. On a new measure of interaction for multivariable process control[J]. IEEE Transactions on Automatic Control, 1966, 11(1): 133-134. |
11 | He M J, Cai W J, Ni W, et al. RNGA based control system configuration for multivariable processes[J]. Journal of Process Control, 2009, 19(6): 1036-1042. |
12 | 任丽红, 刘雨波, 罗雄麟, 等. 多变量时滞系统的关联分析与变量配对[J]. 化工自动化及仪表, 2012, 39(6): 743-746, 760. |
Ren L H, Liu Y B, Luo X L, et al. Association analysis and variable pairing for multivariable system with time delays[J]. Control and Instruments in Chemical Industry, 2012, 39(6): 743-746, 760. | |
13 | 罗雄麟, 任丽红, 周晓龙, 等. 常规控制系统配对设计的动态相对增益阵研究[J]. 化工自动化及仪表, 2012, 39(3): 295-300. |
Luo X L, Ren L H, Zhou X L, et al. Dynamic RGA for control system configuration of multivariable process[J]. Control and Instruments in Chemical Industry, 2012, 39(3): 295-300. | |
14 | Xiong Q, Cai W J, He M J. A practical loop pairing criterion for multivariable processes[J]. Journal of Process Control, 2005, 15(7): 741-747. |
15 | He M J, Cai W J. New criterion for control-loop configuration of multivariable processes[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 7057-7064. |
16 | Witcher M F, McAvoy T J. Interacting control systems: steady state and dynamic measurement of interaction[J]. ISA Transactions, 1977, 16(3): 35-41. |
17 | Grosdidier P, Morari M, Holt B R. Closed-loop properties from steady-state gain information[J]. Industrial & Engineering Chemistry Fundamentals, 1985, 24(2): 221-235. |
18 | Mc Avoy T, Arkun Y, Chen R, et al. A new approach to defining a dynamic relative gain[J]. Control Engineering Practice, 2003, 11(8): 907-914. |
19 | 黄从智, 白焰, 刘向杰. 一类网络化串级控制系统的性能分析[J]. 化工自动化及仪表, 2009, 36(5): 34-39. |
Huang C Z, Bai Y, Liu X J. Performance analysis for a class of networked cascade control system[J]. Control and Instruments in Chemical Industry, 2009, 36(5): 34-39. | |
20 | 黄从智, 白焰, 李新利. 网络控制系统与网络化串级控制系统的结构分析[J]. 化工自动化及仪表, 2009, 36(2): 1-5. |
Huang C Z, Bai Y, Li X L. Architectural analysis of networked control system and networked cascade control system[J]. Control and Instruments in Chemical Industry, 2009, 36(2): 1-5. | |
21 | 龚亦同. 化工工艺设计简介[J]. 安徽化工, 1984, 10(1): 37-40. |
Gong Y T. Introduction to chemical process design[J]. Anhui Chemical Industry, 1984, 10(1): 37-40. | |
22 | 吴志泉. 化工过程设计(一):化工工艺计算[J]. 化学世界, 1987, 28(10): 474-476. |
Wu Z Q. Chemical process design (I): Chemical engineering technology calculation[J]. Chemical World, 1987, 28(10): 474-476. | |
23 | 朱曾惠. 美国提出化工工艺设计新方向[J]. 化工设计, 2000, 10(3): 50-53. |
Zhu Z H. New direction of chemical process design proposed by the United States[J]. Chemical Engineering Design, 2000, 10(3): 50-53. | |
24 | 钱学森, 许国志, 王寿云. 组织管理的技术: 系统工程[J]. 上海理工大学学报, 2011, 33(6): 520-525. |
Qian X S, Xu G Z, Wang S Y. Organizational management technology: system engineering[J]. Journal of University of Shanghai for Science and Technology, 2011, 33(6): 520-525. | |
25 | 刘华平, 孙富春, 何克忠, 等. 奇异摄动控制系统: 理论与应用[J]. 控制理论与应用, 2003, 20(1): 1-7. |
Liu H P, Sun F C, He K Z, et al. Survey of singularly perturbed control systems: theory and applications[J]. Control Theory & Applications, 2003, 20(1): 1-7. | |
26 | 罗雄麟, 袁璞, 林世雄. 催化裂化装置动态机理模型 (Ⅰ): 反应器部分[J]. 石油学报(石油加工), 1998, 14(1): 34. |
Luo X L,Yuan P, Lin S X. Dynamic model of fluid catalytic cracking unit(Ⅰ): Reactor section[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1998, 14(1): 34. | |
27 | 罗雄麟, 袁璞, 林世雄. 催化裂化装置动态机理模型(Ⅱ):再生器部分[J]. 石油学报(石油加工), 1998, 14(2): 34. |
Luo X L,Yuan P, Lin S X. Dynamic modeling of FCC unit(Ⅱ): Regenerator section[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1998, 14(2): 34. | |
28 | 罗雄麟, 袁璞, 林世雄. 催化裂化装置动态机理模型(Ⅲ): 催化剂流动和压力系统[J]. 石油学报(石油加工), 1998, 14(3): 34. |
Luo X L,Yuan P, Lin S X. Dynamic modeling of fluid catalytic cracking unit(Ⅲ): Catalyst transport system and pressure system[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1998, 14(3): 34. | |
29 | Wang R, Luo X L, Xu F. Economic and control performance of a fluid catalytic cracking unit: interactions between combustion air and CO promoters[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 287-304. |
30 | Berezansky L, Braverman E, Idels L. Nicholson's blowflies differential equations revisited: main results and open problems[J]. Applied Mathematical Modelling, 2010, 34(6): 1405-1417. |
31 | Wang R, Luo X L, Xu F. Effect of CO combustion promoters on combustion air partition in FCC under nearly complete combustion[J]. Chinese Journal of Chemical Engineering, 2014, 22(5): 531-537. |
32 | Samad T. A survey on industry impact and challenges thereof [technical activities][J]. IEEE Control Systems Magazine, 2017, 37(1): 17-18. |
33 | 罗雄麟, 许锋. 过程控制与工艺设计一体化: 催化裂化装置动态机理建模与控制分析设计[M]. 北京: 科学出版社, 2008. |
Luo X L, Xu F. Integration of Process Control and Process Design: Dynamic Mechanism Modeling and Control Analysis Design of Catalytic Cracking Unit[M]. Beijing: Science Press, 2008. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[7] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[8] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[9] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[10] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[11] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[12] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[13] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[14] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[15] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||