1 |
Cabeza L F, Solé A, Barreneche C. Review on sorption materials and technologies for heat pumps and thermal energy storage[J]. Renewable Energy, 2017, 110: 3-39.
|
2 |
Aydin D, Casey S P, Riffat S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367.
|
3 |
吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3551-3562.
|
|
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3551-3562.
|
4 |
张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370.
|
|
Zhang Y N, Wang R Z, Li T X. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent[J]. CIESC Journal, 2018, 69(1): 363-370.
|
5 |
Yan T, Wang C Y, Li D. Performance analysis of a solid-gas thermochemical composite sorption system for thermal energy storage and energy upgrade[J]. Applied Thermal Engineering, 2019, 150: 512-521.
|
6 |
Kuznik F, Johannes K, Obrecht C. Chemisorption heat storage in buildings: state-of-the-art and outlook[J]. Energy & Buildings, 2015, 106: 183-191.
|
7 |
Oleksandr S, Emilie C, Nicolas H, et al. Performance characterization of salt-in-silica composite materials for seasonal energy storage design[J]. Journal of Energy Storage, 2018, 19: 320-336.
|
8 |
Mahon D, Claudio G, Eames P. A study of novel high performance and energy dense zeolite composite materials for domestic interseasonal thermochemical energy storage[J]. Energy Procedia, 2019, 158: 4489-4494.
|
9 |
van Alebeek R, Scapino L, Beving M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair[J]. Applied Thermal Engineering, 2018, 139: 325-333.
|
10 |
Rouhani M, Huttema W, Bahrami M. Thermal conductivity of AQSOA FAM-Z02 packed bed adsorbers in open and closed adsorption thermal energy storage systems[J]. International Journal of Refrigeration, 2019, 105: 158-168.
|
11 |
Zhang Y N, Wang R Z, Zhao Y J, et al. Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage[J]. Energy, 2016, 115(1): 120-128.
|
12 |
Teo H W B, Chakraborty A, Kayal S. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption[J]. Applied Thermal Engineering, 2017, 120: 453-462.
|
13 |
ans P D, Courbon E, Permyakova A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 25: 100881.
|
14 |
Grekova A D, Gordeeva L G, Aristov Y I. Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage[J]. Applied Thermal Engineering, 2017, 124: 1401-1408.
|
15 |
Liu H, Nagano K, Togawa J. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J]. Solar Energy, 2015, 111: 186-200.
|
16 |
Palomba V, Sapienza A, Aristov Y. Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage[J]. Applied Energy, 2019, 248: 299-309.
|
17 |
Brancato V, Gordeeva L G, Sapienza A, et al. Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications[J]. International Journal of Refrigeration, 2019, 105: 92-100.
|
18 |
Courbon E, ans P D, Permyakova A, et al. A new composite sorbent based on SrBr2, and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied Energy, 2017, 190: 1184-1194.
|
19 |
Jabbari-Hichri A, Bennici S, Auroux A. CaCl2-containing composites as thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2017, 172: 177-185.
|
20 |
Hiremath C R, Kadoli R, Katti V V. Experimental and theoretical study on dehumidification potential of clay-additives based CaCl2 composite desiccants[J]. Applied Thermal Engineering, 2018, 129: 70-83.
|
21 |
许嘉兴, 李廷贤, 王如竹. 氯化镁/沸石复合材料的吸附特性及储热性能[J]. 化工学报, 2016, 67: 348-355.
|
|
Xu J X, Li T X, Wang R Z. Sorption characteristics and heat storage performance of MgCl2/13X zeolite composite sorbent[J]. CIESC Journal, 2016, 67: 348-355.
|
22 |
Brancato V, Calabrese L, Palomba V, et al. MgSO4·7H2O filled macro cellular foams: an innovative composite sorbent for thermo-chemical energy storage applications for solar buildings[J]. Solar Energy, 2018, 173: 1278-1286.
|
23 |
闫霆, 王文欢, 王程遥. 化学储热技术的研究现状及进展[J]. 化工进展, 2018, 37(12): 4586-4595.
|
|
Yan T, Wang W H, Wang C Y. Research situation and progress on chemical heat storage technology[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4586-4595.
|
24 |
Pan Q W, Wang R Z, Lu Z S, et al. Experimental investigation of an adsorption refrigeration prototype with the working pair of composite adsorbent-ammonia[J]. Applied Thermal Engineering, 2014, 72(2): 275-282.
|
25 |
Jarimi H, Aydin D, Zhang Y A, et al. Review on the recent progress of thermochemical materials and processes for solar thermal energy storage and industrial waste heat recovery[J]. International Journal of Low-Carbon Technologies, 2018, 14 (1): 44-69.
|
26 |
Aristov Y I, Restuccia G, Cacciola G, et al. A family of new working materials for solid sorption air conditioning systems[J]. Applied Thermal Engineering, 2002, 22(2): 191-204.
|
27 |
Patra A K, Dutta A, Bhaumik A. Self-assembled mesoporous g-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water[J]. Journal of Hazardous Materials, 2012, 201/202: 170-177.
|
28 |
陈金妹, 张健. ASAP2020比表面积及孔隙分析仪的应用[J]. 分析仪器, 2009, (3): 61-64.
|
|
Chen J M, Zhang J. Application of ASAP2020 specific surface area and porosity analyzer [J]. Analytical Instrumentation, 2009, (3): 61-64.
|
29 |
Zhang Y N, Wang R Z, Li T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249.
|