CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3372-3378.DOI: 10.11949/0438-1157.20200030
• Process safety • Previous Articles Next Articles
Yu LI1,2(),Chunming XU1,Shuai HAN3,Hongye LI4
Received:
2020-01-08
Revised:
2020-03-20
Online:
2020-07-05
Published:
2020-07-05
Contact:
Yu LI
通讯作者:
李玉
作者简介:
李玉(1981—),男,博士,副教授,基金资助:
CLC Number:
Yu LI, Chunming XU, Shuai HAN, Hongye LI. Failure analysis of weak connection structure of vaulted oil tank under fire condition[J]. CIESC Journal, 2020, 71(7): 3372-3378.
李玉, 徐春明, 韩帅, 李鸿烨. 火灾条件下拱顶油罐弱连接结构的失效分析[J]. 化工学报, 2020, 71(7): 3372-3378.
Add to citation manager EndNote|Ris|BibTeX
试件 方向 | 编码 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20℃ | 50℃ | 80℃ | 100℃ | 150℃ | 200℃ | 250℃ | 300℃ | 350℃ | 400℃ | 450℃ | 500℃ | 550℃ | 600℃ | |
竖直 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 |
水平 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 |
Table 1 Experimental condition
试件 方向 | 编码 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20℃ | 50℃ | 80℃ | 100℃ | 150℃ | 200℃ | 250℃ | 300℃ | 350℃ | 400℃ | 450℃ | 500℃ | 550℃ | 600℃ | |
竖直 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 |
水平 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 |
温度/℃ | 拉断力/kN | 应力值/MPa | ||
---|---|---|---|---|
垂直试件 | 水平试件 | 垂直试件 | 水平试件 | |
20 | 34.24 | 34.48 | 428 | 431 |
50 | 33.1 | 33.44 | 414 | 418 |
100 | 31.96 | 32.5 | 400 | 406 |
150 | 30.88 | 31.52 | 386 | 394 |
200 | 30.51 | 31.31 | 381 | 391 |
250 | 29.52 | 30.38 | 369 | 380 |
300 | 28.8 | 29.68 | 360 | 371 |
350 | 26.14 | 26.96 | 327 | 337 |
400 | 23.76 | 24.46 | 297 | 306 |
450 | 20.48 | 21.04 | 256 | 263 |
500 | 18.44 | 18.7 | 231 | 234 |
550 | 16.19 | 16.12 | 202 | 201 |
600 | 14.56 | 15.04 | 182 | 188 |
Table 2 Experimental results of specimens at different temperatures
温度/℃ | 拉断力/kN | 应力值/MPa | ||
---|---|---|---|---|
垂直试件 | 水平试件 | 垂直试件 | 水平试件 | |
20 | 34.24 | 34.48 | 428 | 431 |
50 | 33.1 | 33.44 | 414 | 418 |
100 | 31.96 | 32.5 | 400 | 406 |
150 | 30.88 | 31.52 | 386 | 394 |
200 | 30.51 | 31.31 | 381 | 391 |
250 | 29.52 | 30.38 | 369 | 380 |
300 | 28.8 | 29.68 | 360 | 371 |
350 | 26.14 | 26.96 | 327 | 337 |
400 | 23.76 | 24.46 | 297 | 306 |
450 | 20.48 | 21.04 | 256 | 263 |
500 | 18.44 | 18.7 | 231 | 234 |
550 | 16.19 | 16.12 | 202 | 201 |
600 | 14.56 | 15.04 | 182 | 188 |
容积/m3 | 失效压力/Pa | ||||||||
---|---|---|---|---|---|---|---|---|---|
20℃ | 100℃ | 200℃ | 300℃ | 400℃ | 450℃ | 500℃ | 550℃ | 600℃ | |
500 | 38610 | 36118 | 34428 | 32559 | 26954 | 23305 | 21081 | 18500 | 16721 |
1000 | 25955 | 24292 | 23164 | 21916 | 18174 | 15738 | 14253 | 12531 | 11343 |
2000 | 15600 | 14616 | 13949 | 13211 | 10998 | 9558 | 8680 | 7662 | 6959 |
3000 | 11683 | 10956 | 10463 | 9917 | 8282 | 7218 | 6569 | 5816 | 5297 |
5000 | 9558 | 8970 | 8571 | 8129 | 6806 | 5944 | 5419 | 4809 | 4389 |
10000 | 8035 | 7547 | 7216 | 6851 | 5754 | 5039 | 4604 | 4099 | 3751 |
Table 3 Failure pressure at different temperatures
容积/m3 | 失效压力/Pa | ||||||||
---|---|---|---|---|---|---|---|---|---|
20℃ | 100℃ | 200℃ | 300℃ | 400℃ | 450℃ | 500℃ | 550℃ | 600℃ | |
500 | 38610 | 36118 | 34428 | 32559 | 26954 | 23305 | 21081 | 18500 | 16721 |
1000 | 25955 | 24292 | 23164 | 21916 | 18174 | 15738 | 14253 | 12531 | 11343 |
2000 | 15600 | 14616 | 13949 | 13211 | 10998 | 9558 | 8680 | 7662 | 6959 |
3000 | 11683 | 10956 | 10463 | 9917 | 8282 | 7218 | 6569 | 5816 | 5297 |
5000 | 9558 | 8970 | 8571 | 8129 | 6806 | 5944 | 5419 | 4809 | 4389 |
10000 | 8035 | 7547 | 7216 | 6851 | 5754 | 5039 | 4604 | 4099 | 3751 |
容积/m3 | 失效压力/Pa | ||||||||
---|---|---|---|---|---|---|---|---|---|
20℃ | 400℃ | 600℃ | |||||||
a | b | 偏差 | a | b | 偏差 | a | b | 偏差 | |
500 | 38610 | 39052 | 1% | 26954 | 27099 | 0.5% | 16721 | 16606 | 0.6% |
1000 | 25955 | 26402 | 1% | 18174 | 18321 | 0.8% | 11343 | 11227 | 1% |
2000 | 15600 | 16076 | 3% | 10998 | 11155 | 1% | 6959 | 6836 | 1% |
3000 | 11683 | 12163 | 4% | 8282 | 8440 | 2% | 5297 | 5172 | 2% |
5000 | 9558 | 10033 | 5% | 6806 | 6962 | 2% | 4389 | 4266 | 3% |
10000 | 8035 | 8523 | 6% | 5754 | 5914 | 3% | 3751 | 3624 | 3% |
Table 4 Comparison of calculation results
容积/m3 | 失效压力/Pa | ||||||||
---|---|---|---|---|---|---|---|---|---|
20℃ | 400℃ | 600℃ | |||||||
a | b | 偏差 | a | b | 偏差 | a | b | 偏差 | |
500 | 38610 | 39052 | 1% | 26954 | 27099 | 0.5% | 16721 | 16606 | 0.6% |
1000 | 25955 | 26402 | 1% | 18174 | 18321 | 0.8% | 11343 | 11227 | 1% |
2000 | 15600 | 16076 | 3% | 10998 | 11155 | 1% | 6959 | 6836 | 1% |
3000 | 11683 | 12163 | 4% | 8282 | 8440 | 2% | 5297 | 5172 | 2% |
5000 | 9558 | 10033 | 5% | 6806 | 6962 | 2% | 4389 | 4266 | 3% |
10000 | 8035 | 8523 | 6% | 5754 | 5914 | 3% | 3751 | 3624 | 3% |
1 | 顾国. 立式储罐罐顶壁厚计算及弱顶结构分析[J]. 云南化工, 2017, 44(6): 63-65. |
Gu G. Calculation of top wall thickness and analysis of weak top structure of vertical tank [J]. Yunnan Chemical Industry, 2017, 44(6): 63-65. | |
2 | 杨君涛, 魏东, 张学魁, 等. 着火油罐燃烧特性的理论分析[J]. 工程热物理学报, 2006, 27(1): 151-154. |
Yang J T, Wei D, Zhang X K, et al. Theoretical analysis of combustion characteristics of oil tanks on fire[J]. Journal of Engineering Thermophysics, 2006, 27(1): 151-154. | |
3 | 巩建鸣, 涂善东, 牛蕴. 火灾环境下液化气球罐力学响应的有限元分析与安全评价[J]. 压力容器, 2003, 20(4): 6-9. |
Gong J M, Tu S D, Niu Y. Finite element analysis and safety evaluation of mechanical response of liquefied spherical tank in fire environment [J]. Pressure Vessel, 2003, 20(4): 6-9. | |
4 | 康青春, 姜自清, 连旦军, 等. 灭火救援行动安全[M]. 北京: 化学工业出版社, 2015: 173-175. |
Kang Q C, Jiang Z Q, Lian D J, et al. Fire Fighting and Rescue Operation Safety[M]. Beijing: Chemical Industry Press, 2015: 173-175. | |
5 | 徐英, 杨一凡, 朱萍, 等. 球罐和大型储罐[M]. 北京: 化学工业出版社, 2004: 51-54. |
Xu Y, Yang Y F, Zhu P, et al. Sphere and Large Storage Tank[M]. Beijing: Chemical Industry Press, 2004: 51-54. | |
6 | 杨光辉. 大型油罐火灾爆炸危害性研究[D]. 东营: 中国石油大学, 2007. |
Yang G H. Research on the fire and explosion endangerment of the large-scale oil can[D]. Dongying: China University of Petroleum, 2007. | |
7 | 张博一, 李前程, 王伟, 等. 大型浮顶储油罐爆炸动力响应及破坏机理[J]. 哈尔滨工业大学学报, 2014, 46(10): 23-30. |
Zhang B Y, Li Q C, Wang W, et al. Dynamic response and failure mechanism of the large floating roof oil tanks under blast loading[J]. Journal of Harbin Institute of Technology, 2014, 46(10): 23-30. | |
8 | 赵焱. 池火灾场景下拱顶油罐爆炸预测与动力响应数值模拟[D]. 鞍山: 辽宁科技大学, 2019. |
Zhao Y. Numerical simulation of explosion prediction and dynamic response of dome roof oil tank under pool fire[D]. Anshan: Liaoning University of Science and Technology, 2019. | |
9 | 徐祥娜. 固定顶储罐结构破坏理论方法研究[D]. 大庆: 东北石油大学, 2012. |
Xu X N. Study on structural failure theory and method of fixed roof tank[D]. Daqing: Northeast Petroleum University, 2012. | |
10 | 万昊天. 固定顶储罐弱壁防护结构设计及优化研究[D]. 大连: 大连理工大学, 2015. |
Wan H T. Design and optimization of weak wall protection structure of fixed roof tank[D]. Dalian: Dalian University of Technology, 2015. | |
11 | 赵敏伟. 储罐事故泄压及弱顶结构的国内外规范研究[J]. 广东化工, 2018, 45(17): 161-164. |
Zhao M W. Study on domestic and foreign specifications of tank accident relief and weak roof structure[J]. Guangdong Chemical Industry, 2018, 45(17): 161-164. | |
12 | 许蕴博. 103—104 m3立式拱顶储罐结构应力分析与弱顶结构评价[D]. 大庆: 东北石油大学, 2011. |
Xu Y B. Structural stress analysis and weak roof structure evaluation of 103—104 m3 vertical dome roof storage tank[D]. Daqing: Northeast Petroleum University, 2011. | |
13 | 丁宇奇. 立式拱顶储罐超压破坏机理与弱顶结构研究[D]. 大庆: 东北石油大学, 2014. |
Ding Y Q. Study on overpressure failure mechanism and weak roof structure of vertical dome roof storage tank[D]. Daqing: Northeast Petroleum University, 2014. | |
14 | 吴晓滨. 拱顶油罐顶壁连接处承载截面的合理计算[J]. 化工设备与管道, 2010, 47(4): 6-8. |
Wu X B. Reasonable calculation of bearing section at the top wall connection of dome roof oil tank[J]. Chemical Equipment and Pipeline, 2010, 47(4): 6-8. | |
15 | 邱水才. 拱顶罐的弱顶结构失效分析[J]. 广东化工, 2018, 46(23): 128-130. |
Qiu S C. Failure analysis of weak roof structure of dome roof tank[J]. Guangdong Chemical Industry, 2018, 46(23): 128-130. | |
16 | 徐磊. 弱顶结构立式拱顶油罐爆炸超压评估研究[J]. 天然气与石油, 2017, 35(6): 117-122. |
Xu L. Study on overpressure evaluation of vertical dome roof tank with weak roof structure[J]. Natural Gas and Oil, 2017, 35(6): 117-122. | |
17 | Kala Z, Gottvald J, Stoniš J, et al. Sensitivity analysis of the stress state in shell courses of welded tanks for oil storage[J]. Statybinäs Konstrukcijos ir Technologijos, 2014, 6(1): 7-12. |
18 | Kala Z, Gottvald J, Stonis J, et al. Sensitivity analysis of stress state of welded tanks[J]. Applied Mechanics and Materials, 2015, 769: 3-8. |
19 | Tarasenko A A, Chepur P V. Aspects of the joint operation of a ring foundation and a soil bed with zones of inhomogeneity present[J]. Soil Mechanics and Foundation Engineering, 2016, 53(4):238-243. |
20 | Shi L, Shuai J, Wang X, et al. Experimental and numerical investigation of stress in a large-scale steel tank with a floating roof[J]. Thin Walled Structures, 2017, 117: 25-34. |
21 | Ziólko J, Supernak E, Mikulski T. Stresses in the zone of process openings in the shell of a vertical cylindrical steel tank[J]. Steel Construction, 2010, 3(1): 42-48. |
22 | Yasin E M, Rasshchepkin K E. The upper zones stability of vertical cylindrical tanks for oil-products storage[J]. Oil Industry, 2008, 3: 57-59. |
23 | Zióko J, Mikulski T, Supernak E. Deformations of the steel shell of a vertical cylindrical tank caused by underpressure[J]. Steel Construction, 2016, 9(1): 33-36. |
24 | Yoshida S, Kuroda S, Uejima H, et al. Simulation for a floating roof behavior of cylindrical storage tank due to wind load(sloshing response analysis)[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 2013, 79(799): 669-680. |
25 | 韦世豪, 杜扬, 王世茂, 等. 储油条件下拱顶油罐的油气爆炸实验[J]. 中国安全生产科学技术, 2017, 13(9): 152-157. |
Wei S H, Du Y, Wang S M, et al. Experiments on gasoline-air mixture explosion in dome roof oil tank with oil storage[J]. Journal of Safety Science and Technology, 2017, 13(9): 152-157. | |
26 | 丁宇奇, 刘巨保, 武铜柱, 等. 基于三维模型的立式拱顶储罐应力分析与弱顶影响因素分析[J]. 压力容器, 2011, 28(12): 11-17. |
Ding Y Q, Liu J B, Wu T Z, et al. Stress analysis of vertical dome tank and influencing factors analysis of weak roof based on three -dimensional model [J]. Pressure Vessel Technology, 2011, 28(12): 11-17. | |
27 | 杨义旻, 夏登友, 李玉. 火灾环境对雷达精密测距技术影响研究[J]. 消防科学与技术, 2019, 38(2): 246-249. |
Yang Y M, Xia D Y, Li Y. Research on the impact of fire environment on radar precision ranging technology[J]. Fire Science and Technology, 2019, 38(2): 246-249. | |
28 | 李鸿烨. 拱顶油罐热力学响应行为及失效研究[D]. 廊坊: 中国人民武装警察部队学院, 2019. |
Li H Y. Study on thermal response behavior and failure of dome roof oil tank[D]. Langfang: Chinese People s Armed Police Force College, 2019. | |
29 | 孟策. 火灾条件下拱顶油罐弱连接结构的力学响应和失效判定[D]. 廊坊: 中国人民武装警察部队学院, 2018. |
Meng C. Mechanical response and invalidation determination of weak connection structure of vault under fire condition[D]. Langfang: Chinese People s Armed Police Force College, 2018. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[6] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[7] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[10] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[11] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[12] | Ke YANG, Chensheng WANG, Hong JI, Kai ZHENG, Zhixiang XING, Haipu BI, Juncheng JIANG. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254. |
[13] | Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234. |
[14] | Yan WANG, Jia HE, Jingjing YANG, Chendi LIN, Wentao JI. Inhibition of polyethylene dust explosion by oxalate and bicarbonate [J]. CIESC Journal, 2022, 73(9): 4207-4216. |
[15] | Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||