CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 921-927.DOI: 10.11949/0438-1157.20200640
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
HUANG Zhengliang1,3(),WANG Chao1,3,GUO Yanni1,3,YANG Yao1,3(),SUN Jingyuan1,3,WANG Jingdai1,2,3,YANG Yongrong1,2,3
Received:
2020-07-25
Revised:
2020-09-01
Online:
2021-02-05
Published:
2021-02-05
Contact:
YANG Yao
黄正梁1,3(),王超1,3,郭燕妮1,3,杨遥1,3(),孙婧元1,3,王靖岱1,2,3,阳永荣1,2,3
通讯作者:
杨遥
作者简介:
黄正梁(1982—),男,助理研究员,基金资助:
CLC Number:
HUANG Zhengliang, WANG Chao, GUO Yanni, YANG Yao, SUN Jingyuan, WANG Jingdai, YANG Yongrong. Investigation of secondary flow in helical coils based on residence time distribution[J]. CIESC Journal, 2021, 72(2): 921-927.
黄正梁, 王超, 郭燕妮, 杨遥, 孙婧元, 王靖岱, 阳永荣. 基于停留时间分布的缠绕管内二次流研究[J]. 化工学报, 2021, 72(2): 921-927.
Add to citation manager EndNote|Ris|BibTeX
No. | d/mm | D/mm | α/(°) |
---|---|---|---|
1 | 15 | 325 | 10 |
2 | 15 | 273 | 10 |
3 | 15 | 219 | 10 |
4 | 15 | 325 | 5 |
5 | 15 | 325 | 15 |
6 | 11 | 325 | 10 |
7 | 22 | 325 | 10 |
Table 1 Structural parameters of helical coils
No. | d/mm | D/mm | α/(°) |
---|---|---|---|
1 | 15 | 325 | 10 |
2 | 15 | 273 | 10 |
3 | 15 | 219 | 10 |
4 | 15 | 325 | 5 |
5 | 15 | 325 | 15 |
6 | 11 | 325 | 10 |
7 | 22 | 325 | 10 |
No. | d/mm | D/mm | α/(°) | ReS | ReL |
---|---|---|---|---|---|
1 | 15 | 325 | 10 | 12000 | — |
2 | 15 | 273 | 10 | 12000 | — |
3 | 15 | 219 | 10 | 10500 | — |
4 | 15 | 325 | 5 | 10500 | — |
5 | 15 | 325 | 15 | 10500 | — |
6 | 11 | 325 | 10 | 5500 | 11000 |
7 | 22 | 325 | 10 | 22000 | — |
Table 2 ReS and ReL in different helical coils
No. | d/mm | D/mm | α/(°) | ReS | ReL |
---|---|---|---|---|---|
1 | 15 | 325 | 10 | 12000 | — |
2 | 15 | 273 | 10 | 12000 | — |
3 | 15 | 219 | 10 | 10500 | — |
4 | 15 | 325 | 5 | 10500 | — |
5 | 15 | 325 | 15 | 10500 | — |
6 | 11 | 325 | 10 | 5500 | 11000 |
7 | 22 | 325 | 10 | 22000 | — |
1 | Sepehr M, Hashemi S S, Rahjoo M, et al. Prediction of heat transfer, pressure drop and entropy generation in shell and helically coiled finned tube heat exchangers[J]. Chemical Engineering Research and Design, 2018, 134: 277-291. |
2 | Wang G, Wang D, Peng X, et al. Experimental and numerical study on heat transfer and flow characteristics in the shell side of helically coiled trilobal tube heat exchanger[J]. Applied Thermal Engineering, 2019, 149: 772-787. |
3 | Gou J, Ma H, Yang Z, et al. An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets[J]. Annals of Nuclear Energy, 2017, 110:648-667. |
4 | Bersano A, Falcone N, Bertani C, et al. Conceptual design of a bayonet tube steam generator with heat transfer enhancement using a helical coiled downcomer[J]. Progress in Nuclear Energy, 2018, 108: 243-252. |
5 | 李京瑶, 公茂琼, 汤奇雄, 等. 小型LNG装置缠绕管换热器的设计[J]. 化工学报, 2015, 66: 108-115. |
Li J Y, Gong M Q, Tang Q X, et al. Design of coiled-wound heat exchanger in small plant of LNG[J]. CIESC Journal, 2015, 66: 108-115. | |
6 | 薛佳幸. 缠绕管式换热器换热工艺研究[D]. 兰州: 兰州交通大学, 2015. |
Xue J X. Research on heat transfer process of coil-wound heatexchangers[D]. Lanzhou: Lanzhou Jiaotong University, 2015. | |
7 | Hardik B K, Baburajan P K, Prabhu S V. Local heat transfer coefficient in helical coils with single phase flow[J]. International Journal of Heat and Mass Transfer, 2015, 89: 522-538. |
8 | 丁超, 胡海涛, 丁国良, 等. 运行工况对LNG绕管式换热器壳侧换热特性的影响[J]. 化工学报, 2018, 69(6): 2417-2423. |
Ding C, Hu H T, Ding G L, et al. Influences of working conditions on heat transfer characteristics in shell side of LNG spiral wound heat exchangers[J]. CIESC Journal, 2018, 69(6): 2417-2423. | |
9 | Zeng M, Zhang G, Li Y, et al. Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger[J]. Heat Transfer Engineering, 2015, 36(9): 790-805. |
10 | Xu X, Liu C, Dang C, et al. Experimental investigation on heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube[J]. International Journal of Refrigeration, 2016, 67: 190-201. |
11 | Kumar V, Saini S, Sharma M, et al. Pressure drop and heat transfer study in tube-in-tube helical heat exchanger[J]. Chemical Engineering Science, 2006, 61(13): 4403-4416. |
12 | Reddy K V K, Kumar B S P, Gugulothu R, et al. CFD analysis of a helically coiled tube in tube heat exchanger[J]. Materials Today: Proceedings, 2017, 4(2): 2341-2349. |
13 | Andrzejczyk R, Muszynski T, Gosz M. Experimental investigations on heat transfer enhancement in shell coil heat exchanger with variable baffles geometry[J]. Chemical Engineering and Processing - Process Intensification, 2018, 132: 114-126. |
14 | Sharma L, Nigam K D P, Roy S. Single phase mixing in coiled tubes and coiled flow inverters in different flow regimes[J]. Chemical Engineering Science, 2017, 160: 227-235. |
15 | 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471. |
Gao X H, Zhou G Y, Tu S D. Study on effects of structural parameters on shell-side heat transfer enhancement in spiral wound heat exchangers[J]. CIESC Journal, 2019, 70(7): 2456-2471. | |
16 | Babita, Sharma S K, Gupta S M, et al. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger[J]. Materials Research Express, 2017, 4(12): 124002. |
17 | Greenspan D. Secondary flow in a curved tube[J]. Journal of Fluid Mechanics, 1973, 57: 167-176. |
18 | Ju H, Huang Z, Xu Y, et al. Hydraulic performance of small bending radius helical coil-pipe[J]. Journal of Nuclear Science and Technology, 2001, 38(10): 826-831. |
19 | Jayakumar J S, Mahajani S M, Mandal J C, et al. CFD analysis of single-phase flows inside helically coiled tubes[J]. Computers & Chemical Engineering, 2010, 34(4): 430-446. |
20 | Guo L, Feng Z, Chen X. An experimental investigation of the frictional pressure drop of steam-water two-phase flow in helical coils[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2601-2610. |
21 | Zhu H, Li Z, Yang X, et al. Flow regime identification for upward two-phase flow in helically coiled tubes[J]. Chemical Engineering Journal, 2017, 308: 606-618. |
22 | Chen H, Zhang B. Fluid flow and mixed convection heat transfer in a rotating curved pipe[J]. International Journal of Thermal Sciences, 2003, 42(11): 1047-1059. |
23 | Hashemi S M, Akhavan-Behabadi M A. An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux[J]. International Communications in Heat and Mass Transfer, 2012, 39(1): 144-151. |
24 | Moosavi A, Abbasalizadeh M, Sadighi D H. Optimization of heat transfer and pressure drop characteristics via air bubble injection inside a shell and coiled tube heat exchanger[J]. Experimental Thermal and Fluid Science, 2016, 78: 1-9. |
25 | Bolinder C J, Bengt S. Numerical prediction of laminar flow and forced convective heat transfer in a helical square duct with a finite pitch[J]. International Journal of Heat and Mass Transfer, 1996, 39(15): 3101-3115. |
26 | Manlapaz R L, Churchill S W. Fully developed laminar flow in a helically coiled tube of finite pitch[J]. Chemical Engineering Communications, 2007, 7(1/2/3): 57-78. |
27 | Shiva K, Karanth K V. Numerical analysis of a helical coiled heat exchanger using CFD[J]. International Journal of Thermal Technologies, 2013, 3(4): 126-130. |
28 | Zhang C, Wang D, Xiang S, et al. Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation[J]. International Journal of Heat and Mass Transfer, 2017, 113: 332-341. |
29 | Hüttl T J, Wagner C, Friedrich R. Navier-Stokes solutions of laminar flows based on orthogonal helical co-ordinates[J]. International Journal for Numerical Methods in Fluids, 1999, 29(7): 749-763. |
30 | Andrade C R, Zaparoli E L. Effects of temperature-dependent viscosity on fully developed laminar forced convection in a curved duct[J]. International Communications in Heat and Mass Transfer, 2001, 28(2): 211-220. |
31 | Sheeba A, Abhijith C M, Jose P M. Experimental and numerical investigations on the heat transfer and flow characteristics of a helical coil heat exchanger[J]. International Journal of Refrigeration, 2019, 99: 490-497. |
32 | Wang M, Zheng M, Chao M, et al. Experimental and CFD estimation of single-phase heat transfer in helically coiled tubes[J]. Progress in Nuclear Energy, 2019, 112: 185-190. |
33 | Wang K, Xu X, Wu Y, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120. |
34 | Mirgolbabaei H. Numerical investigation of vertical helically coiled tube heat exchangers thermal performance[J]. Applied Thermal Engineering, 2018, 136: 252-259. |
35 | Haryoko L A F, Kurnia J C, Sasmito A P. Numerical investigation of subcooled boiling heat transfer in helically-coiled tube[J]. International Journal of Automotive and Mechanical Engineering, 2020, 17(1): 7675-7686. |
36 | Lin C X, Ebadian M A. Developing turbulent convective heat transfer in helical pipes[J]. International Journal of Heat and Mass Transfer, 1997, 40(16): 3861-3873. |
37 | Ghiyas U D, Chughtai I R, Inayat M H, et al. Salient developments in residence time distribution (RTD) analysis—a review[C]//International Conference on Tracers and Tracing Methods. 2006. |
38 | Rossi D, Gargiulo L, Valitov G, et al. Experimental characterization of axial dispersion in coiled flow inverters[J]. Chemical Engineering Research and Design, 2017, 120: 159-170. |
39 | Rojahn P, Hessel V, Nigam K D P, et al. Applicability of the axial dispersion model to coiled flow inverters containing single liquid phase and segmented liquid-liquid flows[J]. Chemical Engineering Science, 2018, 182: 77-92. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||