CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5681-5695.DOI: 10.11949/0438-1157.20200673
• Process system engineering • Previous Articles Next Articles
QIAO Junfei1,2(),GUO Zihao1,2,3,TANG Jian1,2()
Received:
2020-05-26
Revised:
2020-07-28
Online:
2020-12-05
Published:
2020-12-05
Contact:
TANG Jian
通讯作者:
汤健
作者简介:
乔俊飞(1968—),男,教授,基金资助:
CLC Number:
QIAO Junfei,GUO Zihao,TANG Jian. Virtual sample generation method based on improved megatrend diffusion and hidden layer interpolation with its application[J]. CIESC Journal, 2020, 71(12): 5681-5695.
乔俊飞,郭子豪,汤健. 基于改进大趋势扩散和隐含层插值的虚拟样本生成方法及应用[J]. 化工学报, 2020, 71(12): 5681-5695.
Add to citation manager EndNote|Ris|BibTeX
项目 | 混凝土抗压强度/MPa |
---|---|
ymax | 79.99 |
yvsg-max | 100.472 |
上限扩展率 | 25.61% |
ymin | 6.88 |
yvsg-min | 0 |
下限扩展率 | 100% |
Table 1 Comparison of extended output space and original output space for Benchmark data
项目 | 混凝土抗压强度/MPa |
---|---|
ymax | 79.99 |
yvsg-max | 100.472 |
上限扩展率 | 25.61% |
ymin | 6.88 |
yvsg-min | 0 |
下限扩展率 | 100% |
样本 | 浓度/(kg/m3) | 龄期/d | 混凝土抗压强度/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|
水泥 | 高炉渣 | 粉煤灰 | 水 | 超塑化剂 | 粗集料 | 细集料 | |||
第1组数据 | 540 | 0 | 0 | 162 | 2.5 | 1040 | 676 | 28 | 37.104 |
第2组数据 | 332.5 | 142.5 | 0 | 228 | 0 | 932 | 594 | 180 | 30.674 |
第1组生成样本 | 488.125 | 35.625 | 0 | 178.5 | 1.875 | 1013 | 655.5 | 66 | 39.207 |
第2组生成样本 | 436.25 | 71.25 | 0 | 195 | 1.25 | 986 | 635 | 104 | 41.31 |
第3组生成样本 | 384.375 | 106.875 | 0 | 211.5 | 0.625 | 959 | 614.5 | 142 | 35.992 |
备注 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输出 |
Table 2 Input and output of virtual samples generated based on equal interval method for Benchmark data (taking the first and second samples with n=3 as example)
样本 | 浓度/(kg/m3) | 龄期/d | 混凝土抗压强度/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|
水泥 | 高炉渣 | 粉煤灰 | 水 | 超塑化剂 | 粗集料 | 细集料 | |||
第1组数据 | 540 | 0 | 0 | 162 | 2.5 | 1040 | 676 | 28 | 37.104 |
第2组数据 | 332.5 | 142.5 | 0 | 228 | 0 | 932 | 594 | 180 | 30.674 |
第1组生成样本 | 488.125 | 35.625 | 0 | 178.5 | 1.875 | 1013 | 655.5 | 66 | 39.207 |
第2组生成样本 | 436.25 | 71.25 | 0 | 195 | 1.25 | 986 | 635 | 104 | 41.31 |
第3组生成样本 | 384.375 | 106.875 | 0 | 211.5 | 0.625 | 959 | 614.5 | 142 | 35.992 |
备注 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输出 |
n | Xinsert-temp | Yinsert-temp | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 292.664 | 70.481 | -69.88 | 175.089 | 2.292 | 802.293 | 543.142 | -35.603 | 44.01 |
2 | 278.301 | 93.42 | -49.115 | 181.486 | 4.993 | 819.112 | 511.977 | -62.01 | 44.053 |
3 | 250.453 | 99.612 | -31.037 | 187.579 | 5.812 | 802.988 | 520.632 | -79.17 | 41.626 |
4 | 233.829 | 75.385 | -36.606 | 185.512 | 3.208 | 763.418 | 569.621 | -64.189 | 38.377 |
5 | 103.508 | -17.664 | -29.344 | 153.978 | -2.336 | 735.579 | 592.56 | -21.546 | 41.288 |
合格比率 | 100% | 80% | 0% | 100% | 80% | 100% | 80% | 0% | 100% |
Table 3 Virtual sample input and output results based on multiple sets of hidden layer interpolation method without regularization term for Benchmark data (taking the former five samples as example)
n | Xinsert-temp | Yinsert-temp | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 292.664 | 70.481 | -69.88 | 175.089 | 2.292 | 802.293 | 543.142 | -35.603 | 44.01 |
2 | 278.301 | 93.42 | -49.115 | 181.486 | 4.993 | 819.112 | 511.977 | -62.01 | 44.053 |
3 | 250.453 | 99.612 | -31.037 | 187.579 | 5.812 | 802.988 | 520.632 | -79.17 | 41.626 |
4 | 233.829 | 75.385 | -36.606 | 185.512 | 3.208 | 763.418 | 569.621 | -64.189 | 38.377 |
5 | 103.508 | -17.664 | -29.344 | 153.978 | -2.336 | 735.579 | 592.56 | -21.546 | 41.288 |
合格比率 | 100% | 80% | 0% | 100% | 80% | 100% | 80% | 0% | 100% |
n | Xinsert-temp | Yinsert-temp | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 583.657 | 271.588 | 197.941 | 234.288 | 18.838 | 1172.991 | 934.768 | 201.621 | 35.034 |
2 | 584.102 | 271.682 | 197.839 | 234.446 | 18.824 | 1172.598 | 934.191 | 201.648 | 34.975 |
3 | 584.548 | 271.775 | 197.736 | 234.604 | 18.809 | 1172.206 | 933.614 | 201.674 | 34.915 |
4 | 584.994 | 271.869 | 197.633 | 234.762 | 18.795 | 1171.813 | 933.037 | 201.7 | 34.856 |
5 | 585.439 | 271.962 | 197.53 | 234.921 | 18.78 | 1171.42 | 932.46 | 201.727 | 34.796 |
合格比率 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Table 4 Virtual sample input and output results based on multiple sets of hidden layer interpolation method with adding regularization term for Benchmark data (taking the former five samples as example)
n | Xinsert-temp | Yinsert-temp | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 583.657 | 271.588 | 197.941 | 234.288 | 18.838 | 1172.991 | 934.768 | 201.621 | 35.034 |
2 | 584.102 | 271.682 | 197.839 | 234.446 | 18.824 | 1172.598 | 934.191 | 201.648 | 34.975 |
3 | 584.548 | 271.775 | 197.736 | 234.604 | 18.809 | 1172.206 | 933.614 | 201.674 | 34.915 |
4 | 584.994 | 271.869 | 197.633 | 234.762 | 18.795 | 1171.813 | 933.037 | 201.7 | 34.856 |
5 | 585.439 | 271.962 | 197.53 | 234.921 | 18.78 | 1171.42 | 932.46 | 201.727 | 34.796 |
合格比率 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
n | Xinsert | Yinsert | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 583.657 | 271.588 | 197.941 | 234.288 | 18.838 | 1172.991 | 934.768 | 201.621 | 35.034 |
2 | 584.102 | 271.682 | 197.839 | 234.446 | 18.824 | 1172.598 | 934.191 | 201.648 | 34.975 |
3 | 584.548 | 271.775 | 197.736 | 234.604 | 18.809 | 1172.206 | 933.614 | 201.674 | 34.915 |
4 | 584.994 | 271.869 | 197.633 | 234.762 | 18.795 | 1171.813 | 933.037 | 201.7 | 34.856 |
5 | 585.439 | 271.962 | 197.53 | 234.921 | 18.78 | 1171.42 | 932.46 | 201.727 | 34.796 |
Table 5 Virtual sample input and output results based on multiple sets of hidden layer interpolation method with deletion operation for Benchmark data (taking the former five samples as example)
n | Xinsert | Yinsert | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 583.657 | 271.588 | 197.941 | 234.288 | 18.838 | 1172.991 | 934.768 | 201.621 | 35.034 |
2 | 584.102 | 271.682 | 197.839 | 234.446 | 18.824 | 1172.598 | 934.191 | 201.648 | 34.975 |
3 | 584.548 | 271.775 | 197.736 | 234.604 | 18.809 | 1172.206 | 933.614 | 201.674 | 34.915 |
4 | 584.994 | 271.869 | 197.633 | 234.762 | 18.795 | 1171.813 | 933.037 | 201.7 | 34.856 |
5 | 585.439 | 271.962 | 197.53 | 234.921 | 18.78 | 1171.42 | 932.46 | 201.727 | 34.796 |
实验 | 虚拟样本数量 | RMSE均值 | RMSE方差 | 最佳RMSE及插值参数 | |||
---|---|---|---|---|---|---|---|
数值 | |||||||
A | 0 | 23.599 | 13.226 | — | — | — | — |
B | 60 | 18.370 | 11.330 | 16.577 | 6 | — | — |
C | 161 | 16.156 | 8.831 | 14.525 | 3 | — | 6 |
D | 29 | 21.128 | 112.204 | 15.498 | 1 | 1 | 3 |
E | 32 | 19.780 | 93.273 | 14.466 | 2 | 1 | 3 |
F | 729 | 16.134 | 9.692 | 13.383 | 6 | 2 | 8 |
Table 6 Comparison of experimental results for Benchmark data
实验 | 虚拟样本数量 | RMSE均值 | RMSE方差 | 最佳RMSE及插值参数 | |||
---|---|---|---|---|---|---|---|
数值 | |||||||
A | 0 | 23.599 | 13.226 | — | — | — | — |
B | 60 | 18.370 | 11.330 | 16.577 | 6 | — | — |
C | 161 | 16.156 | 8.831 | 14.525 | 3 | — | 6 |
D | 29 | 21.128 | 112.204 | 15.498 | 1 | 1 | 3 |
E | 32 | 19.780 | 93.273 | 14.466 | 2 | 1 | 3 |
F | 729 | 16.134 | 9.692 | 13.383 | 6 | 2 | 8 |
项目 | DXN浓度/(ng TEQ/m3) |
---|---|
ymax | 0.083 |
yvsg-max | 0.133 |
上限扩展率 | 60.24% |
ymin | 0.002 |
yvsg-min | 0 |
下限扩展率 | 100% |
Table 7 Comparison between extended output space and original output space for DXN data
项目 | DXN浓度/(ng TEQ/m3) |
---|---|
ymax | 0.083 |
yvsg-max | 0.133 |
上限扩展率 | 60.24% |
ymin | 0.002 |
yvsg-min | 0 |
下限扩展率 | 100% |
样本 | 反应器入口氧气 浓度/% | 燃烧炉排右空气 流量×10-3/(m3/h) | 二次空预器出口 温度/℃ | 干燥炉排入口空气 温度/℃ | 燃烧炉排左侧 温度/℃ | DXN浓度/ (ng TEQ/m3) |
---|---|---|---|---|---|---|
第1组数据 | 4.8 | 1.5 | 14 | 176 | 181 | 0.05 |
第2组数据 | 3.2 | 3.4 | 24 | 180 | 198 | 0.035 |
第1组生成样本 | 12.054 | 5.184 | 33.801 | 209.677 | 257.477 | 0.036 |
第2组生成样本 | 12.244 | 5.261 | 34.361 | 211.212 | 259.972 | 0.0362 |
第3组生成样本 | 12.435 | 5.338 | 34.921 | 212.748 | 262.468 | 0.0364 |
备注 | 样本输入(DXN变量1) | 样本输入(DXN变量2) | 样本输入(DXN变量3) | 样本输入(DXN变量4) | 样本输入(DXN变量5) | 样本输出 |
Table 8 Virtual samples input and output based on generated at equal interval method (taking the first and second samples with n=3 as example) for DXN data
样本 | 反应器入口氧气 浓度/% | 燃烧炉排右空气 流量×10-3/(m3/h) | 二次空预器出口 温度/℃ | 干燥炉排入口空气 温度/℃ | 燃烧炉排左侧 温度/℃ | DXN浓度/ (ng TEQ/m3) |
---|---|---|---|---|---|---|
第1组数据 | 4.8 | 1.5 | 14 | 176 | 181 | 0.05 |
第2组数据 | 3.2 | 3.4 | 24 | 180 | 198 | 0.035 |
第1组生成样本 | 12.054 | 5.184 | 33.801 | 209.677 | 257.477 | 0.036 |
第2组生成样本 | 12.244 | 5.261 | 34.361 | 211.212 | 259.972 | 0.0362 |
第3组生成样本 | 12.435 | 5.338 | 34.921 | 212.748 | 262.468 | 0.0364 |
备注 | 样本输入(DXN变量1) | 样本输入(DXN变量2) | 样本输入(DXN变量3) | 样本输入(DXN变量4) | 样本输入(DXN变量5) | 样本输出 |
n | Xinsert-temp | Yinsert-temp | ||||
---|---|---|---|---|---|---|
1 | -1.839 | -0.766 | 4.944 | 84.585 | 90.561 | 0.0417 |
2 | -1.862 | -0.749 | 4.963 | 84.512 | 90.128 | 0.0413 |
3 | -1.885 | -0.731 | 4.982 | 84.439 | 89.695 | 0.0409 |
4 | -1.908 | -0.714 | 5 | 84.365 | 89.263 | 0.0405 |
5 | -1.931 | -0.697 | 5.019 | 84.292 | 88.83 | 0.0401 |
合格比率 | 100% | 0% | 100% | 100% | 100% | 100% |
Table 9 Input and output results based on multiple groups of hidden layer interpolation method without regularization term for DXN data (taking the former five samples as example)
n | Xinsert-temp | Yinsert-temp | ||||
---|---|---|---|---|---|---|
1 | -1.839 | -0.766 | 4.944 | 84.585 | 90.561 | 0.0417 |
2 | -1.862 | -0.749 | 4.963 | 84.512 | 90.128 | 0.0413 |
3 | -1.885 | -0.731 | 4.982 | 84.439 | 89.695 | 0.0409 |
4 | -1.908 | -0.714 | 5 | 84.365 | 89.263 | 0.0405 |
5 | -1.931 | -0.697 | 5.019 | 84.292 | 88.83 | 0.0401 |
合格比率 | 100% | 0% | 100% | 100% | 100% | 100% |
n | Xinsert-temp | Yinsert-temp | ||||
---|---|---|---|---|---|---|
1 | 12.584 | 5.416 | 33.933 | 214.927 | 262.392 | 0.0498 |
2 | 12.603 | 5.431 | 33.986 | 214.748 | 262.18 | 0.0493 |
3 | 12.622 | 5.446 | 34.039 | 214.568 | 261.969 | 0.0488 |
4 | 12.641 | 5.461 | 34.091 | 214.388 | 261.757 | 0.0483 |
5 | 12.66 | 5.476 | 34.144 | 214.209 | 261.545 | 0.0478 |
合格比率 | 100% | 100% | 100% | 100% | 100% | 100% |
Table 10 Virtual sample input and output results based on multiple sets of hidden layer interpolation method with adding regularization term for DXN data (taking the former five samples as example)
n | Xinsert-temp | Yinsert-temp | ||||
---|---|---|---|---|---|---|
1 | 12.584 | 5.416 | 33.933 | 214.927 | 262.392 | 0.0498 |
2 | 12.603 | 5.431 | 33.986 | 214.748 | 262.18 | 0.0493 |
3 | 12.622 | 5.446 | 34.039 | 214.568 | 261.969 | 0.0488 |
4 | 12.641 | 5.461 | 34.091 | 214.388 | 261.757 | 0.0483 |
5 | 12.66 | 5.476 | 34.144 | 214.209 | 261.545 | 0.0478 |
合格比率 | 100% | 100% | 100% | 100% | 100% | 100% |
n | Xinsert | Yinsert | ||||
---|---|---|---|---|---|---|
1 | 12.584 | 5.416 | 33.933 | 214.927 | 262.392 | 0.0498 |
2 | 12.603 | 5.431 | 33.986 | 214.748 | 262.18 | 0.0493 |
3 | 12.622 | 5.446 | 34.039 | 214.568 | 261.969 | 0.0488 |
4 | 12.641 | 5.461 | 34.091 | 214.388 | 261.757 | 0.0483 |
5 | 12.66 | 5.476 | 34.144 | 214.209 | 261.545 | 0.0478 |
Table 11 Virtual sample input and output results based on multiple sets of hidden layer interpolation method with deletion operation for DXN data (taking the former five samples as example)
n | Xinsert | Yinsert | ||||
---|---|---|---|---|---|---|
1 | 12.584 | 5.416 | 33.933 | 214.927 | 262.392 | 0.0498 |
2 | 12.603 | 5.431 | 33.986 | 214.748 | 262.18 | 0.0493 |
3 | 12.622 | 5.446 | 34.039 | 214.568 | 261.969 | 0.0488 |
4 | 12.641 | 5.461 | 34.091 | 214.388 | 261.757 | 0.0483 |
5 | 12.66 | 5.476 | 34.144 | 214.209 | 261.545 | 0.0478 |
实验 | 虚拟样本数量 | RMSE均值 | RMSE方差 | 最佳RMSE及插值参数 | |||
---|---|---|---|---|---|---|---|
数值 | |||||||
A | 0 | 0.0383 | 0.000203 | — | — | — | |
B | 136 | 0.0440 | 0.000220 | 0.0379 | 8 | ||
C | 61 | 0.0304 | 1.108×10-5 | 14.525 | 2 | — | 2 |
D | 436 | 0.0288 | 2.532×10-5 | 0.0255 | 2 | 9 | 3 |
E | 81 | 0.0289 | 2.073×10-5 | 0.0255 | 1 | 2 | 6 |
F | 501 | 0.0286 | 1.697×10-5 | 0.0254 | 5 | 1 | 7 |
Table 12 Comparison of experimental results for DXN data
实验 | 虚拟样本数量 | RMSE均值 | RMSE方差 | 最佳RMSE及插值参数 | |||
---|---|---|---|---|---|---|---|
数值 | |||||||
A | 0 | 0.0383 | 0.000203 | — | — | — | |
B | 136 | 0.0440 | 0.000220 | 0.0379 | 8 | ||
C | 61 | 0.0304 | 1.108×10-5 | 14.525 | 2 | — | 2 |
D | 436 | 0.0288 | 2.532×10-5 | 0.0255 | 2 | 9 | 3 |
E | 81 | 0.0289 | 2.073×10-5 | 0.0255 | 1 | 2 | 6 |
F | 501 | 0.0286 | 1.697×10-5 | 0.0254 | 5 | 1 | 7 |
1 | Qiao J F, Guo Z H, Tang J. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: a survey[J]. Acta Automatica Sinica, 2020, 46(6): 1063-1089. |
2 | Di A B, Fortuna L, Graziani S, et al. Development of a soft sensor for a thermal cracking unit using a small experimental data set[C]//2007 IEEE International Symposium on Intelligent Signal Processing. IEEE, 2007: 1-6. |
3 | Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. |
4 | Liu Y, Sun W, Liu J. Greenhouse gas emissions from different municipal solid waste management scenarios in China: based on carbon and energy flow analysis[J]. Waste Management, 2017, 68: 653-661. |
5 | Bai J, Sun X, Zhang C, et al. Mechanism and kinetics study on the ozonolysis reaction of 2, 3, 7, 8-TCDD in the atmosphere[J]. Journal of Environmental Sciences, 2014, 26(1): 181-188. |
6 | Zhang H J, Ni Y W, Chen J P, et al. Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator[J]. Chemosphere, 2008, 70(4): 721-730. |
7 | Martens H A, Dardenne P. Validation and verification of regression in small data sets[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1/2): 99-121. |
8 | Deng J L. Control problems of grey systems[J]. Systems & Control Letters, 1982, 1(5): 288-294. |
9 | Chang C J, Li D C, Huang Y H, et al. A novel gray forecasting model based on the box plot for small manufacturing data sets[J]. Applied Mathematics and Computation, 2015, 265: 400-408. |
10 | Chervonenkis A I A, Vapnik V N. Theory of uniform convergence of frequencies of events to their probabilities and problems of search for an optimal solution from empirical data[J]. Automation and Remote Control, 1971, 32: 207-217. |
11 | Poggio T, Vetter T. Recognition and structure from one 2D model view: observations on prototypes, object classes and symmetries[R]. Technical Report A. I. Memo 1347. Massachusetts Institute of Technology Cambridge, MA, USA, 1992. |
12 | Niyogi P, Girosi F, Poggio T. Incorporating prior information in machine learning by creating virtual examples[J]. Proceedings of the IEEE, 1998, 86(11): 2196-2209. |
13 | Ho K I J, Leung C S, Sum J. Convergence and objective functions of some fault/noise-injection-based online learning algorithms for RBF networks[J]. IEEE Transactions on Neural Networks, 2010, 21(6): 938-947. |
14 | Song H, Choi K K, Lee I, et al. Adaptive virtual support vector machine for reliability analysis of high-dimensional problems[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 479-491. |
15 | Li L J, Peng Y, Qiu G Y, et al. A survey of virtual sample generation technology for face recognition[J]. Artificial Intelligence Review, 2018, 50 (1): 1-20. |
16 | Chang C J, Li D C, Chen C C, et al. A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities[J]. Computers & Industrial Engineering, 2014, 67(1): 139-145. |
17 | Li D C, Lin Y S. Using virtual sample generation to build up management knowledge in the early manufacturing stages[J]. European Journal of Operational Research, 2005, 175(1): 413-434. |
18 | Li D C, Wen I H. A genetic algorithm-based virtual sample generation technique to improve small data set learning[J]. Neurocomputing, 2014, 143(16): 222-230. |
19 | Chen Z S, Zhu B, He Y L, et al. PSO based virtual sample generation method for small sample sets: applications to regression datasets[J]. Engineering Applications of Artificial Intelligence, 2017, 59: 236-243. |
20 | Gong H F, Chen Z S, Zhu Q X, et al. A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: an empirical study of petrochemical industries[J]. Applied Energy, 2017, 197: 405-415. |
21 | Coqueret G. Approximate NORTA simulations for virtual sample generation[J]. Expert Systems with Applications, 2017, 73: 69-81. |
22 | 朱宝. 虚拟样本生成技术及建模应用研究[D]. 北京: 北京化工大学, 2017. |
Zhu B. Research on virtual sample generation technologies and their modeling application[D].Beijing: Beijing University of Chemical Technology, 2017. | |
23 | Wang F Y. A big-data perspective on AI: Newton, Merton, and analytics intelligence[J]. IEEE Intelligent Systems, 2012, 27(5): 24-34. |
24 | Zhu Q, Chen Z, Zhang X. et al. Dealing with small sample size problems in process industry using virtual sample generation: a Kriging-based approach[J]. Soft Computing, 2020, 24: 6889-6902. |
25 | Tang J, Jia M Y, Liu Z, et al. Modeling high dimensional frequency spectral data based on virtual sample generation technique[C]//IEEE International Conference on Information and Automation. IEEE, 2015: 1090-1095. |
26 | 汤健, 乔俊飞, 柴天佑, 等.基于虚拟样本生成技术的多组分机械信号建模[J]. 自动化学报, 2018, 44(9): 1569-1589. |
Tang J, Qiao J F, Chai T Y, et al. Modeling multiple components mechanical signals by means of virtual sample generation technique[J]. Acta Automatica Sinica, 2018, 44(9): 1569-1589. | |
27 | Li D C, Wu C S, Tsai T I, et al. Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge[J]. Computers & Operations Research, 2007, 34(4): 966-982. |
28 | Huang G, Huang G B, Song S, et al. Trends in extreme learning machines: a review[J]. Neural Networks, 2015, 61: 32-48. |
29 | 朱宝, 乔俊飞.基于AANN特征缩放的虚拟样本生成方法及其过程建模应用[J]. 计算机与应用化学, 2019, 36(4): 304-307. |
Zhu B, Qiao J F. Novel virtual sample generation based on feature scaling of auto-associative neural network and its applications to process modeling[J]. Computers and Applied Chemistry, 2019, 36(4): 304-307. | |
30 | Yang J, Yu X, Xie Z Q, et al. A novel virtual sample generation method based on Gaussian distribution[J]. Knowledge-Based Systems, 2011, 24(6): 740-748. |
31 | Guo Y, Chen T, Yang J, et al. Study on on-line detection of dioxins based on correlation model[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3524-3529. |
32 | Li A D, Hong W, Wang J. Online detection of dioxin and dioxin-related substances using laser desoption / laser ionization-mass spectrometry[J]. Journal of Yanshan University, 2015, 39(6): 511-515 |
33 | Bunsan S, Chen W Y, Chen H W, et al. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks[J]. Chemosphere, 2013, 92(3): 258-264. |
34 | Xiao X D, Lu J W, Hai J, et al. Prediction of dioxin emissions in flue gas from waste incineration based on support vector regression[J]. Renewable Energy Resources, 2017, 35(8): 1107-1114. |
35 | Tang J, Qiao J F. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm[J]. CIESC Journal, 2019, 70(2): 696-706. |
36 | Chang N B, Chen W C. Prediction of PCDDs/PCDFs emissions from municipal incinerators by genetic programming and neural network modeling[J]. Waste Management and Research, 2000, 18(4): 341-351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||