CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2178-2189.DOI: 10.11949/0438-1157.20200995
• Process system engineering • Previous Articles Next Articles
CHU Fei1,2(),PENG Chuang2,JIA Runda3,CHEN Tao4,LU Ningyun5
Received:
2020-07-23
Revised:
2020-09-17
Online:
2021-04-05
Published:
2021-04-05
Contact:
CHU Fei
通讯作者:
褚菲
作者简介:
褚菲(1984—),男,博士,副教授,基金资助:
CLC Number:
CHU Fei, PENG Chuang, JIA Runda, CHEN Tao, LU Ningyun. Online prediction method of batch process product quality based on multi-scale kernel JYMKPLS transfer model[J]. CIESC Journal, 2021, 72(4): 2178-2189.
褚菲, 彭闯, 贾润达, 陈韬, 陆宁云. 基于多尺度核JYMKPLS迁移模型的间歇过程产品质量的在线预测方法[J]. 化工学报, 2021, 72(4): 2178-2189.
Add to citation manager EndNote|Ris|BibTeX
输入变量 | 过程A的数值范围 | 过程B的数值范围 |
---|---|---|
培养量/L | 105~109 | 108~113 |
二氧化碳浓度/(mmol/L) | 0.52~0.56 | 0.62~0.65 |
pH | 4.3~5.2 | 4.1~4.6 |
通风率/(L/h) | 5~6 | 6~7 |
搅拌功率/W | 32~41 | 35~44 |
喂料温度/K | 295.8~297.3 | 296.3~298.2 |
pH设定点 | 5.0~5.2 | 5.1~5.3 |
Table 1 Working conditions for batch processes A and B
输入变量 | 过程A的数值范围 | 过程B的数值范围 |
---|---|---|
培养量/L | 105~109 | 108~113 |
二氧化碳浓度/(mmol/L) | 0.52~0.56 | 0.62~0.65 |
pH | 4.3~5.2 | 4.1~4.6 |
通风率/(L/h) | 5~6 | 6~7 |
搅拌功率/W | 32~41 | 35~44 |
喂料温度/K | 295.8~297.3 | 296.3~298.2 |
pH设定点 | 5.0~5.2 | 5.1~5.3 |
方法 | RMSE | MPRE |
---|---|---|
KPLS | 0.0081 | 0.0058 |
MKPLS | 0.0079 | 0.0057 |
Table 2 The evaluation index comparison of two prediction methods
方法 | RMSE | MPRE |
---|---|---|
KPLS | 0.0081 | 0.0058 |
MKPLS | 0.0079 | 0.0057 |
方法 | RMSE | MPRE |
---|---|---|
KPLS | 0.0081 | 0.0058 |
JYKPLS | 0.0065 | 0.0044 |
JYMKPLS | 0.0063 | 0.0042 |
Table 3 The evaluation index comparison of three prediction methods
方法 | RMSE | MPRE |
---|---|---|
KPLS | 0.0081 | 0.0058 |
JYKPLS | 0.0065 | 0.0044 |
JYMKPLS | 0.0063 | 0.0042 |
方法 | 平均RMSE |
---|---|
KPLS | 0.0070 |
JYKPLS | 0.0048 |
JYMKPLS | 0.0036 |
Table 4 Comparison of mean RMSE of three prediction methods
方法 | 平均RMSE |
---|---|
KPLS | 0.0070 |
JYKPLS | 0.0048 |
JYMKPLS | 0.0036 |
1 | Jia R D, Mao Z Z, Wang F L, et al. Self-tuning final product quality control of batch processes using kernel latent variable model[J]. Chemical Engineering Research and Design, 2015, 94: 119-130. |
2 | Jiang Q C, Yan S F, Yan X F, et al. Data-driven two-dimensional deep correlated representation learning for nonlinear batch process monitoring[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2839-2848. |
3 | Zhang S M, Zhao C H. Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3773-3783. |
4 | Tulsyan A, Garvin C, Undey C. Industrial batch process monitoring with limited data[J]. Journal of Process Control, 2019, 77: 114-133. |
5 | Chu F, Cheng X, Jia R D, et al. Final quality prediction method for new batch processes based on improved JYKPLS process transfer model[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 183: 1-10. |
6 | Shokry A, Vicente P, Escudero G, et al. Data-driven soft-sensors for online monitoring of batch processes with different initial conditions[J]. Computers & Chemical Engineering, 2018, 118: 159-179. |
7 | 赵春晖, 王福利, 姚远, 等. 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报, 2010, 36(3): 366-374. |
Zhao C H, Wang F L, Yao Y, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3): 366-374. | |
8 | Li X, Wu F, Zhang R D, et al. Nonlinear multivariate quality prediction based on OSC-SVM-PLS[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8154-8161. |
9 | Luo L J, Bao S Y, Mao J F, et al. Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 150: 9-22. |
10 | Yao L, Ge Z Q. Locally weighted prediction methods for latent factor analysis with supervised and semisupervised process data[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1): 126-138. |
11 | Yao L, Ge Z Q. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498. |
12 | Xiong W L, Shi X D. Soft sensor modeling with a selective updating strategy for Gaussian process regression based on probabilistic principle component analysis[J]. Journal of the Franklin Institute, 2018, 355(12): 5336-5349. |
13 | Yuan X F, Ge Z Q, Song Z H. Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13736-13749. |
14 | Mei C L, Su Y, Liu G H, et al. Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes[J]. Chinese Journal of Chemical Engineering, 2017, 25(1): 116-122. |
15 | Wang K, Gopaluni R B, Chen J, et al. Deep learning of complex batch process data and its application on quality prediction[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7233-7242. |
16 | Jin H P, Chen X G, Yang J W, et al. Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 143: 58-78. |
17 | Souza F A A, Araújo R, Mendes J. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 69-79. |
18 | Yao L, Ge Z Q. Big data quality prediction in the process industry: a distributed parallel modeling framework[J]. Journal of Process Control, 2018, 68: 1-13. |
19 | Bidar B, Sadeghi J, Shahraki F, et al. Data-driven soft sensor approach for online quality prediction using state dependent parameter models[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162: 130-141. |
20 | Lu J D, Yao Y, Gao F R. Model migration for development of a new process model[J]. Industrial & Engineering Chemistry Research, 2009, 48(21): 9603-9610. |
21 | Zhu J L, Gao F R. Similar batch process monitoring with orthogonal subspace alignment[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8173-8183. |
22 | Weiss K, Khoshgoftaar T M, Wang D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 1-40. |
23 | Tsung F, Zhang K, Cheng L W, et al. Statistical transfer learning: a review and some extensions to statistical process control[J]. Quality Engineering, 2018, 30(1): 115-128. |
24 | Shen S, Sadoughi M, Li M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries[J]. Applied Energy, 2020, 260: 114296. |
25 | Shao S Y, McAleer S, Yan R Q, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455. |
26 | Liu Y, Yang C, Liu K X, et al. Domain adaptation transfer learning soft sensor for product quality prediction[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 192: 103813. |
27 | Jaeckle C M, MacGregor J F. Product transfer between plants using historical process data[J]. AIChE Journal, 2000, 46(10): 1989-1997. |
28 | García Muñoz S, MacGregor J F, Kourti T. Product transfer between sites using Joint-Y PLS[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 79(1/2): 101-114. |
29 | 汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037-1050. |
Wang H Q, Sun F C, Cai Y N, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8): 1037-1050. | |
30 | Zhou S S, Liu H W, Ye F. Variant of Gaussian kernel and parameter setting method for nonlinear SVM[J]. Neurocomputing, 2009, 72(13/14/15): 2931-2937. |
31 | Bao J, Chen Y Y, Yu L, et al. A multi-scale kernel learning method and its application in image classification[J]. Neurocomputing, 2017, 257: 16-23. |
32 | Liu R N, Wang F, Yang B Y, et al. Multiscale kernel based residual convolutional neural network for motor fault diagnosis under nonstationary conditions[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3797-3806. |
33 |
Sun G Y, Rong X Q, Zhang A Z, et al. Multi-scale mahalanobis kernel-based support vector machine for classification of high-resolution remote sensing images[J]. Cognitive Computation, 2019. DOI: 10.1007/s12559-019-09631-5.
DOI |
34 | 贾润达, 毛志忠, 王福利. 基于KPLS模型的间歇过程产品质量控制[J]. 化工学报, 2013, 64(4): 1332-1339. |
Jia R D, Mao Z Z, Wang F L. KPLS model based product quality control for batch processes[J]. CIESC Journal, 2013, 64(4): 1332-1339. | |
35 | Iosifidis A, Tefas A, Pitas I. Minimum class variance extreme learning machine for human action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(11): 1968-1979. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[9] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[12] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[13] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[14] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[15] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||