CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1302-1313.DOI: 10.11949/0438-1157.20200639
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
HUANG Wenbo1,2,3(),CAO Wenjiong1,2,3,LI Tingliang1,2,3,4,JIANG Fangming1,2,3()
Received:
2020-05-25
Revised:
2020-09-30
Online:
2021-03-05
Published:
2021-03-05
Contact:
JIANG Fangming
黄文博1,2,3(),曹文炅1,2,3,李庭樑1,2,3,4,蒋方明1,2,3()
通讯作者:
蒋方明
作者简介:
黄文博(1990—),男,博士,助理研究员,基金资助:
CLC Number:
HUANG Wenbo, CAO Wenjiong, LI Tingliang, JIANG Fangming. Numerical study and economic analysis of gravity heat pipe hot dry rock geothermal system[J]. CIESC Journal, 2021, 72(3): 1302-1313.
黄文博, 曹文炅, 李庭樑, 蒋方明. 干热岩热能重力热管采热系统数值模拟研究与经济性分析[J]. 化工学报, 2021, 72(3): 1302-1313.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 Temperature field variation in the heat pipe and DHE geothermal systems with or without a fractured reservoir (axial to radial = 1∶10 for better view)
Fig.6 Heat flux through well surface (a) and temperature in well (b) along the well-depth direction for the heat pipe and DHE geothermal systems with a reservoir at 30 a into the process
采热方案 | 重力热管方案 | 套管方案 | EGS方案 |
---|---|---|---|
钻井费用/万元 | 1250.0/0① | 1250.0/0① | 10675.0[ |
井内改造费用/万元 | 336.0 | 264.0 | |
热储激发费用/万元 | 500.0 | 0 | |
发电设备费用/万元 | 485.8 | 142.6 | 3000.0 |
总投资费用/万元 | 2571.8/1321.8① | 1646.6/406.6① | 13675.0 |
折现率/% | 8 | 8 | 8 |
运行维护费用/(万元/年) | 29.0 | 8.5 | 179.0 |
使用寿命/年 | 50 | 50 | 30 |
发电量/kW | 242.9 | 63.3 | 1500[ |
发电成本/(CNY/(kW·h)) | 1.124/0.644① | 2.580/0.753① | 1.061 |
Table 1 Economic evaluation of the three geothermal power stations
采热方案 | 重力热管方案 | 套管方案 | EGS方案 |
---|---|---|---|
钻井费用/万元 | 1250.0/0① | 1250.0/0① | 10675.0[ |
井内改造费用/万元 | 336.0 | 264.0 | |
热储激发费用/万元 | 500.0 | 0 | |
发电设备费用/万元 | 485.8 | 142.6 | 3000.0 |
总投资费用/万元 | 2571.8/1321.8① | 1646.6/406.6① | 13675.0 |
折现率/% | 8 | 8 | 8 |
运行维护费用/(万元/年) | 29.0 | 8.5 | 179.0 |
使用寿命/年 | 50 | 50 | 30 |
发电量/kW | 242.9 | 63.3 | 1500[ |
发电成本/(CNY/(kW·h)) | 1.124/0.644① | 2.580/0.753① | 1.061 |
1 | Tester J W, Anderson B J, Batchelor A, et al. The Future of Geothermal Energy[M]. Cambridge: Massachusetts Institute of Technology, 2006: 15-20. |
2 | 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. |
Xu T F, Yuan Y L, Jiang Z J, et al. Hot dry rock and enhanced geothermal engineering: international experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152. | |
3 | Templeton J D, Ghoreishi-Madiseh S A, Hassani F, et al. Abandoned petroleum wells as sustainable sources of geothermal energy[J]. Energy, 2014, 70: 366-373. |
4 | Kohl T, Brenni R, Eugster W. System performance of a deep borehole heat exchanger[J]. Geothermics, 2002, 31(6): 687-708. |
5 | 阚长宾, 亓发庆, 于晓聪, 等. 利用废弃油井开发地热能[J]. 可再生能源, 2008, 26(1): 90-92. |
Kan C B, Qi F Q, Yu X C, et al. Exploiting geothermal energy from the abandoned well[J]. Renewable Energy Resources, 2008, 26(1): 90-92. | |
6 | Bu X, Ma W, Li H. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renewable Energy, 2012, 41: 80-85. |
7 | Jiang P X, Li X, Xu R, et al. Heat extraction of novel underground well pattern systems for geothermal energy exploitation[J]. Renewable Energy, 2016, 90: 83-94. |
8 | Cui G, Ren S, Zhang L, et al. Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well[J]. Energy, 2017, 128: 366-377. |
9 | Nian Y L, Cheng W L. Evaluation of geothermal heating from abandoned oil wells[J]. Energy, 2018, 142: 592-607. |
10 | Huang W B, Cao W J, Jiang F M. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018, 162: 630-644. |
11 | Fan R, Jiang Y, Yao Y, et al. A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection[J]. Energy, 2007, 32(11): 2199-2209. |
12 | Shi Y, Song X, Li G, et al. Numerical investigation on heat extraction performance of a downhole heat exchanger geothermal system[J]. Applied Thermal Engineering, 2018, 134: 513-526. |
13 | Gustafsson A M, Westerlund L, Hellström G. CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger[J]. Applied Thermal Engineering, 2010, 30(6/7): 683-691. |
14 | Shi Y, Song X, Li G, et al. Numerical investigation on the reservoir heat production capacity of a downhole heat exchanger geothermal system[J]. Geothermics, 2018, 72: 163-169. |
15 | 蒋方明, 黄文博, 曹文炅. 干热岩热能的热管开采方案及其技术可行性研究[J]. 新能源进展, 2017, 5(6): 426-434. |
Jiang F M, Huang W B, Cao W J. Mining hot dry rock geothermal energy by heat pipe: conceptual design and technical feasibility study[J]. Advances in New and Renewable Energy, 2017, 5(6): 426-434. | |
16 | Jiang F M, Chen J L, Huang W B, et al. A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy, 2014, 72: 300-310. |
17 | Chen J L, Jiang F M. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy[J]. Renewable Energy, 2015, 74: 37-48. |
18 | Huang W B, Cao W J, Jiang F M. Heat extraction performance of EGS with heterogeneous reservoir: a numerical evaluation[J]. International Journal of Heat and Mass Transfer, 2017, 108: 645-657. |
19 | Cao W J, Huang W B, Jiang F M. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International Journal of Heat and Mass Transfer, 2016, 92: 1205-1217. |
20 | Jiang F M, Luo L, Chen J L. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J]. International Communications in Heat and Mass Transfer, 2013, 41: 57-62. |
21 | Vasil'Ev L. Geothermal energy utilization with heat pipes[J]. Journal of Engineering Physics, 1990, 59(3): 1186-1190. |
22 | Mashiko K, Mochizuki M, Watanabe Y, et al. Development of a large scale loop type gravity assisted heat pipe having showering nozzles[C]// Proceedings of 4th International Heat Pipe Symposium. Japan, 1994. |
23 | Kusaba S, Suzuki H, Hirowatari K, et al. Extraction of geothermal energy and electric power generation using a large scale heat pipe[C]// Proceedings of World Geothermal Congress. 2000. |
24 | Zhang P P, Zhu J L, Chang N N, et al. Experimental study on heat transfer performance of new gravity heat pipe in geothermal utilization[J]. Energy Procedia, 2019, 158: 5629-5634. |
25 | 张龙, 吴志湘, 邓保顺. 某超长重力热管提取地热技术的试验分析及改造措施[J]. 节能, 2015, (10): 77-80. |
Zhang L, Wu Z X, Deng B S. Experimental analysis and improvement measures of an ultra-long gravity heat pipe geothermal extraction system[J]. Energy Conservation, 2015, (10): 77-80. | |
26 | Swamee P, Jain A K. Explicit equations for pipeflow problems[J]. Journal of the Hydraulics Division, 1976, 102(5): 657-664. |
27 | Cheng W L, Li T T, Nian Y L, et al. Studies on geothermal power generation using abandoned oil wells[J]. Energy, 2013, 59: 248-254. |
28 | 李心, 赵晓辉, 李江烨, 等. 塔式太阳能热发电全寿命周期成本电价分析[J]. 电力系统自动化, 2015, 39(7): 84-88. |
Li X, Zhao X H, Li J Y, et al. Analysis of life-cycle levelized cost of electricity for tower solar thermal power[J]. Automation of Electric Power Systems, 2015, 39(7): 84-88. | |
29 | Jon G, Harold A, Pablo R, et al. Renewable Power Generation Costs in 2018[M]. Abu Dhabi: International Renewable Energy Agency, 2019: 11-80. |
30 | 骆超, 郦伟. 两级地热发电系统经济性及敏感性分析[J]. 中国科学: 技术科学, 2019, 49(11): 1295-1308. |
Luo C, Li W. The exergoeconomic and sensitive analysis of two-stage geothermal power systems[J]. Scientia Sinica Technologica, 2019, 49(11): 1295-1308. | |
31 | 袁家海, 艾昱, 曾昱榕, 等.中国燃煤发电成本和上网电价政策研究[J]. 煤炭经济研究, 2018, 38(11): 43-48. |
Yuan J H, Ai Y, Zeng Y R, et al. Research on China's coal-fired power generation cost and on-grid tariff policy[J]. Coal Economic Research, 2018, 38(11): 43-48. | |
32 | Huang Y B, Zhang Y J, Hu Z J, et al. Economic analysis of heating for an enhanced geothermal system based on a simplified model in Yitong Basin, China[J]. Energy Science & Engineering, 2019, 7(6): 2658-2674. |
33 | Cheung B, Hilling S, Brierley S P. Impact of low cost proppant and fluid systems in hydraulic fracturing of unconventional wells[C]// Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi, 2018. |
34 | Clauser C, Ewert M. The renewables cost challenge: levelized cost of geothermal electric energy compared to other sources of primary energy—review and case study[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3683-3693. |
35 | Lu S M. A global review of enhanced geothermal system (EGS)[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2902-2921. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[3] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[4] | Wenjing LU, Xianfeng LI. Research process of porous ion conducting membranes for flow batteries [J]. CIESC Journal, 2023, 74(1): 192-204. |
[5] | Bin LI, Wenming SONG, Kunlong YANG, Shuang JIANG, Tianyong ZHANG. Molecular engineering research progress of active materials for aqueous organic flow batteries [J]. CIESC Journal, 2022, 73(7): 2806-2818. |
[6] | Qingyi LIU, Tong XIAO, Wenjie SUN, Jiahao ZHANG, Changhui LIU. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles [J]. CIESC Journal, 2022, 73(5): 1863-1882. |
[7] | Yinhao ZHANG, Fei ZHAN, Chengxu LI, Chang YU, Jieshan QIU. Concentration flow cells with ammonium vanadium bronze electrodes for harvesting salinity gradient energy [J]. CIESC Journal, 2022, 73(2): 857-864. |
[8] | Yunlong ZHOU, Dongyao LIN, Xiaoyuan YE, Bo SUN. Effect of ions on photocatalytic H2 production using corn straw as sacrificial agent [J]. CIESC Journal, 2022, 73(2): 722-729. |
[9] | Haocheng WANG, Jingyao YANG, Xueqiang DONG, Hao GUO, Yanxing ZHAO, Maoqiong GONG. Thermodynamic analysis and optimization of 10 t/d hydrogen liquefaction process [J]. CIESC Journal, 2022, 73(11): 5106-5117. |
[10] | Shan CHENG, Rui LUO, Hong TIAN, Zhenqi WANG, Jingchun HUANG, Yu QIAO. Effect of hydrothermal carbonization temperature on transformation path of organic nitrogen in sludge [J]. CIESC Journal, 2022, 73(11): 5220-5229. |
[11] | GU Xiao, ZOU Huiming, HAN Xinxin, TANG Mingsheng, TIAN Changqing. Heating performance of vapor injection heat pump based on waste heat recovery [J]. CIESC Journal, 2021, 72(S1): 326-335. |
[12] | ZHANG Yijie, LIU Xing, CHEN Zhenwu, ZHANG Xiaochun, ZHOU Yong, QIU Jiandong, GU Wenbo, MA Tao. Sizing method and operating characteristics of distributed photovoltaic battery system [J]. CIESC Journal, 2021, 72(S1): 503-511. |
[13] | CHEN Jianye, DING Yue, WU Zhao, YU Yunxing, SHAO Shuangquan. Numerical analysis of vortex tube performance in novel hydrogen refueling process [J]. CIESC Journal, 2021, 72(S1): 461-466. |
[14] | CUI Yunhao, QIAO Jianxin, WANG Xiaotao, SONG Bin, YANG Zhaohui, DAI Wei, LI Haibing. Stirling cooler operating in room temperature [J]. CIESC Journal, 2021, 72(S1): 390-397. |
[15] | WANG Yubo, QUAN Zhenhua, JING Heran, WANG Lincheng, ZHAO Yaohua. Thermodynamic analysis and operation optimization of multi energy complementary energy storage system [J]. CIESC Journal, 2021, 72(5): 2474-2483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||