1 |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
|
2 |
Yip N Y, Brogioli D, Hamelers H V, et al. Salinity gradients for sustainable energy: primer, progress, and prospects[J]. Environmental Science & Technology, 2016, 50(22): 12072-12094.
|
3 |
董昌明. 海洋绿色能源[M]. 北京: 科学出版社, 2016.
|
|
Dong C M. Oceanic green energy[M]. Beijing: Science Press, 2016.
|
4 |
Siria A, Bocquet M L, Bocquet L. New avenues for the large-scale harvesting of blue energy[J]. Nature Reviews Chemistry, 2017, 1: 91.
|
5 |
Pattle R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660.
|
6 |
Burheim O S, Liu F, Sales B B, et al. Faster time response by the use of wire electrodes in capacitive salinity gradient energy systems[J]. The Journal of Physical Chemistry C, 2012, 116(36): 19203-19210.
|
7 |
Post J W, Veerman J, Hamelers H V M, et al. Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis[J]. Journal of Membrane Science, 2007, 288(1/2): 218-230.
|
8 |
Straub A P, Deshmukh A, Elimelech M. Pressure-retarded osmosis for power generation from salinity gradients: is it viable? [J]. Energy & Environmental Science, 2016, 9(1): 31-48.
|
9 |
Klaysom C, Cath T Y, Depuydt T, et al. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply[J]. Chemical Society Reviews, 2013, 42(16): 6959-6989.
|
10 |
贾红星. 基于压力延迟渗透原理的盐差能发电技术研究[D]. 青岛: 中国海洋大学, 2014.
|
|
Jia H X. The research of ocean salinity energy based on pressure-retarded method[D]. Qingdao, China: Ocean University of China, 2014.
|
11 |
Achilli A, Childress A E. Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation—review[J]. Desalination, 2010, 261(3): 205-211.
|
12 |
Mei Y, Tang C Y. Recent developments and future perspectives of reverse electrodialysis technology: a review[J]. Desalination, 2018, 425: 156-174.
|
13 |
Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488(7411): 313-319.
|
14 |
邓会宁, 何云飞, 胡柏松, 等. 反电渗析法盐差能发电用离子交换膜研究进展[J]. 化工进展, 2017, 36(1): 224-231.
|
|
Deng H N, He Y F, Hu B S, et al. Progress in ion exchange membranes for reverse electrodialysis[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 224-231.
|
15 |
Touati K, Tadeo F. Green energy generation by pressure retarded osmosis: State of the art and technical advancement—review[J]. International Journal of Green Energy, 2017, 14(4): 337-360.
|
16 |
Brogioli D. Extracting renewable energy from a salinity difference using a capacitor[J]. Physical Review Letters, 2009, 103(5): 058501.
|
17 |
Brogioli D, Zhao R, Biesheuvel P M. A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes[J]. Energy & Environmental Science, 2011, 4(3): 772-777.
|
18 |
Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1: 16070.
|
19 |
Brogioli D, Ziano R, Rica R A, et al. Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference[J]. Energy & Environmental Science, 2012, 5(12): 9870-9880.
|
20 |
Fernández M M, Wagterveld R M, Ahualli S, et al. Polyelectrolyte-versus membrane-coated electrodes for energy production by capmix salinity exchange methods[J]. Journal of Power Sources, 2016, 302: 387-393.
|
21 |
Zhan F, Wang G, Wu T T, et al. High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences[J]. Journal of Materials Chemistry A, 2017, 5(38): 20374-20380.
|
22 |
Zhan F, Wang Z J, Wu T T, et al. High performance concentration capacitors with graphene hydrogel electrodes for harvesting salinity gradient energy[J]. Journal of Materials Chemistry A, 2018, 6(12): 4981-4987.
|
23 |
Kim T, Logan B E, Gorski C A. High power densities created from salinity differences by combining electrode and Donnan potentials in a concentration flow cell[J]. Energy & Environmental Science, 2017, 10(4): 1003-1012.
|
24 |
Kim T, Rahimi M, Logan B E, et al. Harvesting energy from salinity differences using battery electrodes in a concentration flow cell[J]. Environmental Science & Technology, 2016, 50(17): 9791-9797.
|
25 |
La Mantia F, Pasta M, Deshazer H D, et al. Batteries for efficient energy extraction from a water salinity difference[J]. Nano Letters, 2011, 11(4): 1810-1813.
|
26 |
Ye M, Pasta M, Xie X, et al. Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater for recovery of salinity-gradient energy[J]. Energy Environ. Sci., 2014, 7(7): 2295-2300.
|
27 |
Vermaas D A, Bajracharya S, Sales B B, et al. Clean energy generation using capacitive electrodes in reverse electrodialysis[J]. Energy Environ. Sci., 2013, 6(2): 643-651.
|
28 |
Pasta M, Wessells C D, Cui Y, et al. A desalination battery[J]. Nano Letters, 2012, 12(2): 839-843.
|
29 |
Fei H L, Liu X, Lin Y S, et al. Facile synthesis of ammonium vanadium oxide nanorods for Na-ion battery cathodes[J]. Journal of Colloid and Interface Science, 2014, 428: 73-77.
|
30 |
Sarkar S, Veluri P S, Mitra S. Morphology controlled synthesis of layered NH4V4O10 and the impact of binder on stable high rate electrochemical performance[J]. Electrochimica Acta, 2014, 132: 448-456.
|
31 |
Xu Y, Dong H S, Zhou M, et al. Ammonium vanadium bronze as a potassium-ion battery cathode with high rate capability and cyclability[J]. Small Methods, 2019, 3(8): 1800349.
|
32 |
Li C X, Wang S Y, Wang G, et al. NH4V4O10/rGO Composite as a high-performance electrode material for hybrid capacitive deionization[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 303-311.
|
33 |
Abbood H A, Peng H, Gao X H, et al. Fabrication of cross-like NH4V4O10 nanobelt array controlled by CMC as soft template and photocatalytic activity of its calcinated product[J]. Chemical Engineering Journal, 2012, 209: 245-254.
|
34 |
Xu Y, Han X S, Zheng L, et al. Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires[J]. Journal of Materials Chemistry, 2011, 21(38): 14466.
|