CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 857-864.DOI: 10.11949/0438-1157.20210942
• Energy and environmental engineering • Previous Articles Next Articles
Yinhao ZHANG1(),Fei ZHAN2(
),Chengxu LI1,Chang YU1(
),Jieshan QIU1,2(
)
Received:
2021-07-08
Revised:
2021-10-28
Online:
2022-02-18
Published:
2022-02-05
Contact:
Chang YU,Jieshan QIU
张殷豪1(),詹菲2(
),李城序1,于畅1(
),邱介山1,2(
)
通讯作者:
于畅,邱介山
作者简介:
张殷豪(1996—),男,硕士研究生,基金资助:
CLC Number:
Yinhao ZHANG, Fei ZHAN, Chengxu LI, Chang YU, Jieshan QIU. Concentration flow cells with ammonium vanadium bronze electrodes for harvesting salinity gradient energy[J]. CIESC Journal, 2022, 73(2): 857-864.
张殷豪, 詹菲, 李城序, 于畅, 邱介山. 铵钒青铜基浓差流动电池的盐差发电性能研究[J]. 化工学报, 2022, 73(2): 857-864.
Fig.2 XRD patterns (a); SEM images [(b),(c)]; TEM image (d); HRTEM images [(e),(f)]; FTIR spectra (g); Raman spectrum (h) and V 2p XPS spectra (i) of the as-prepared NVO sample
Fig.5 Curves of output power density of the NVO based concentration flow cell (R=50 Ω)(a); Effects of solution kinds (b) and external resistance [(c),(d)] on the peak power density (Pmax) and average power density (Pave)
1 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
2 | Yip N Y, Brogioli D, Hamelers H V, et al. Salinity gradients for sustainable energy: primer, progress, and prospects[J]. Environmental Science & Technology, 2016, 50(22): 12072-12094. |
3 | 董昌明. 海洋绿色能源[M]. 北京: 科学出版社, 2016. |
Dong C M. Oceanic green energy[M]. Beijing: Science Press, 2016. | |
4 | Siria A, Bocquet M L, Bocquet L. New avenues for the large-scale harvesting of blue energy[J]. Nature Reviews Chemistry, 2017, 1: 91. |
5 | Pattle R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660. |
6 | Burheim O S, Liu F, Sales B B, et al. Faster time response by the use of wire electrodes in capacitive salinity gradient energy systems[J]. The Journal of Physical Chemistry C, 2012, 116(36): 19203-19210. |
7 | Post J W, Veerman J, Hamelers H V M, et al. Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis[J]. Journal of Membrane Science, 2007, 288(1/2): 218-230. |
8 | Straub A P, Deshmukh A, Elimelech M. Pressure-retarded osmosis for power generation from salinity gradients: is it viable? [J]. Energy & Environmental Science, 2016, 9(1): 31-48. |
9 | Klaysom C, Cath T Y, Depuydt T, et al. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply[J]. Chemical Society Reviews, 2013, 42(16): 6959-6989. |
10 | 贾红星. 基于压力延迟渗透原理的盐差能发电技术研究[D]. 青岛: 中国海洋大学, 2014. |
Jia H X. The research of ocean salinity energy based on pressure-retarded method[D]. Qingdao, China: Ocean University of China, 2014. | |
11 | Achilli A, Childress A E. Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation—review[J]. Desalination, 2010, 261(3): 205-211. |
12 | Mei Y, Tang C Y. Recent developments and future perspectives of reverse electrodialysis technology: a review[J]. Desalination, 2018, 425: 156-174. |
13 | Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488(7411): 313-319. |
14 | 邓会宁, 何云飞, 胡柏松, 等. 反电渗析法盐差能发电用离子交换膜研究进展[J]. 化工进展, 2017, 36(1): 224-231. |
Deng H N, He Y F, Hu B S, et al. Progress in ion exchange membranes for reverse electrodialysis[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 224-231. | |
15 | Touati K, Tadeo F. Green energy generation by pressure retarded osmosis: State of the art and technical advancement—review[J]. International Journal of Green Energy, 2017, 14(4): 337-360. |
16 | Brogioli D. Extracting renewable energy from a salinity difference using a capacitor[J]. Physical Review Letters, 2009, 103(5): 058501. |
17 | Brogioli D, Zhao R, Biesheuvel P M. A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes[J]. Energy & Environmental Science, 2011, 4(3): 772-777. |
18 | Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1: 16070. |
19 | Brogioli D, Ziano R, Rica R A, et al. Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference[J]. Energy & Environmental Science, 2012, 5(12): 9870-9880. |
20 | Fernández M M, Wagterveld R M, Ahualli S, et al. Polyelectrolyte-versus membrane-coated electrodes for energy production by capmix salinity exchange methods[J]. Journal of Power Sources, 2016, 302: 387-393. |
21 | Zhan F, Wang G, Wu T T, et al. High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences[J]. Journal of Materials Chemistry A, 2017, 5(38): 20374-20380. |
22 | Zhan F, Wang Z J, Wu T T, et al. High performance concentration capacitors with graphene hydrogel electrodes for harvesting salinity gradient energy[J]. Journal of Materials Chemistry A, 2018, 6(12): 4981-4987. |
23 | Kim T, Logan B E, Gorski C A. High power densities created from salinity differences by combining electrode and Donnan potentials in a concentration flow cell[J]. Energy & Environmental Science, 2017, 10(4): 1003-1012. |
24 | Kim T, Rahimi M, Logan B E, et al. Harvesting energy from salinity differences using battery electrodes in a concentration flow cell[J]. Environmental Science & Technology, 2016, 50(17): 9791-9797. |
25 | La Mantia F, Pasta M, Deshazer H D, et al. Batteries for efficient energy extraction from a water salinity difference[J]. Nano Letters, 2011, 11(4): 1810-1813. |
26 | Ye M, Pasta M, Xie X, et al. Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater for recovery of salinity-gradient energy[J]. Energy Environ. Sci., 2014, 7(7): 2295-2300. |
27 | Vermaas D A, Bajracharya S, Sales B B, et al. Clean energy generation using capacitive electrodes in reverse electrodialysis[J]. Energy Environ. Sci., 2013, 6(2): 643-651. |
28 | Pasta M, Wessells C D, Cui Y, et al. A desalination battery[J]. Nano Letters, 2012, 12(2): 839-843. |
29 | Fei H L, Liu X, Lin Y S, et al. Facile synthesis of ammonium vanadium oxide nanorods for Na-ion battery cathodes[J]. Journal of Colloid and Interface Science, 2014, 428: 73-77. |
30 | Sarkar S, Veluri P S, Mitra S. Morphology controlled synthesis of layered NH4V4O10 and the impact of binder on stable high rate electrochemical performance[J]. Electrochimica Acta, 2014, 132: 448-456. |
31 | Xu Y, Dong H S, Zhou M, et al. Ammonium vanadium bronze as a potassium-ion battery cathode with high rate capability and cyclability[J]. Small Methods, 2019, 3(8): 1800349. |
32 | Li C X, Wang S Y, Wang G, et al. NH4V4O10/rGO Composite as a high-performance electrode material for hybrid capacitive deionization[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 303-311. |
33 | Abbood H A, Peng H, Gao X H, et al. Fabrication of cross-like NH4V4O10 nanobelt array controlled by CMC as soft template and photocatalytic activity of its calcinated product[J]. Chemical Engineering Journal, 2012, 209: 245-254. |
34 | Xu Y, Han X S, Zheng L, et al. Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires[J]. Journal of Materials Chemistry, 2011, 21(38): 14466. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[12] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[13] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[14] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[15] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 392
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||