CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 326-335.DOI: 10.11949/0438-1157.20201551
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
GU Xiao1,2(),ZOU Huiming2(),HAN Xinxin3,TANG Mingsheng2,TIAN Changqing2
Received:
2020-11-02
Revised:
2021-01-22
Online:
2021-06-20
Published:
2021-06-20
Contact:
ZOU Huiming
通讯作者:
邹慧明
作者简介:
顾潇(1995—),男,硕士研究生,基金资助:
CLC Number:
GU Xiao, ZOU Huiming, HAN Xinxin, TANG Mingsheng, TIAN Changqing. Heating performance of vapor injection heat pump based on waste heat recovery[J]. CIESC Journal, 2021, 72(S1): 326-335.
顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
Add to citation manager EndNote|Ris|BibTeX
运行模式 | 无余热回收的 基本喷射补气 | 带余热回收的 补气并联 | 无余热回收的 单级压缩 | 带余热回收的 不补气并联 | 单级压缩制冷 | 带电池散热的 单级压缩制冷 |
---|---|---|---|---|---|---|
四通阀 | 制热 | 制热 | 制热 | 制热 | 制冷 | 制冷 |
EEV1 | 开 | 开 | 开 | 开 | 开 | 开 |
EEV2 | 开 | 开 | 关 | 关 | 关 | 关 |
EEV3 | 关 | 开 | 关 | 开 | 关 | 关 |
V1 | 开 | 开 | 开 | 开 | 开 | 关 |
V2 | 关 | 开 | 关 | 开 | 关 | 开 |
V3 | 开 | 开 | 关 | 关 | 关 | 关 |
V4 | 关 | 开 | 关 | 开 | 关 | 关 |
V5 | 关 | 关 | 关 | 关 | 关 | 开 |
泵 | 关 | 开 | 关 | 开 | 关 | 开 |
Table 1 Opening and closing status of valves in heat recovery heat pump system under different operating modes
运行模式 | 无余热回收的 基本喷射补气 | 带余热回收的 补气并联 | 无余热回收的 单级压缩 | 带余热回收的 不补气并联 | 单级压缩制冷 | 带电池散热的 单级压缩制冷 |
---|---|---|---|---|---|---|
四通阀 | 制热 | 制热 | 制热 | 制热 | 制冷 | 制冷 |
EEV1 | 开 | 开 | 开 | 开 | 开 | 开 |
EEV2 | 开 | 开 | 关 | 关 | 关 | 关 |
EEV3 | 关 | 开 | 关 | 开 | 关 | 关 |
V1 | 开 | 开 | 开 | 开 | 开 | 关 |
V2 | 关 | 开 | 关 | 开 | 关 | 开 |
V3 | 开 | 开 | 关 | 关 | 关 | 关 |
V4 | 关 | 开 | 关 | 开 | 关 | 关 |
V5 | 关 | 关 | 关 | 关 | 关 | 开 |
泵 | 关 | 开 | 关 | 开 | 关 | 开 |
名称 | 主要参数 |
---|---|
压缩机 | R410a变频涡旋压缩机,排量80 cm3/r,频率30~90 Hz |
车内换热器 | 车内换热器共两组,每组尺寸为1300 mm×200 mm×154 mm |
车外换热器 | 车外换热器共一组,尺寸为1400 mm×840 mm×109 mm |
中间换热器 | 中间换热器共两组,选用板式换热器,每组尺寸165 mm ×80 mm×80 mm |
余热换热器 | 余热换热器共两组,选用板式换热器,每组尺寸153 mm ×75 mm×75 mm |
主路电子膨胀阀 | 阀口径3.2 mm |
补气支路电子膨胀阀 | 阀口径2.2 mm |
水泵 | 流量25 L/min,扬程8 m,转速2900 r/min |
Table 2 Parameters of main components of vapor injection heat pump unit
名称 | 主要参数 |
---|---|
压缩机 | R410a变频涡旋压缩机,排量80 cm3/r,频率30~90 Hz |
车内换热器 | 车内换热器共两组,每组尺寸为1300 mm×200 mm×154 mm |
车外换热器 | 车外换热器共一组,尺寸为1400 mm×840 mm×109 mm |
中间换热器 | 中间换热器共两组,选用板式换热器,每组尺寸165 mm ×80 mm×80 mm |
余热换热器 | 余热换热器共两组,选用板式换热器,每组尺寸153 mm ×75 mm×75 mm |
主路电子膨胀阀 | 阀口径3.2 mm |
补气支路电子膨胀阀 | 阀口径2.2 mm |
水泵 | 流量25 L/min,扬程8 m,转速2900 r/min |
测量参数 | 控制范围 | 控制精度 | 测量参数 | 控制范围 | 控制精度 |
---|---|---|---|---|---|
环境室温度/℃ | -40~55 | ±0.1℃ | 环境室湿度 | 20%~90% | ±0.1℃(WB) |
最大制热量/kW | 30 | ±1.5% | 最大风量/(m3/h) | 12000 | ±1% |
温度/℃ | -50~200 | ±0.5℃ | 质量流量/(kg/h) | 0~150, 0~500 | ±0.2% |
压力/MPa | 0~3.0, 0~4.5 | ±0.5% | 压缩机功率/kW | 0~15 | ±0.2% |
Table 3 Laboratory error analysis
测量参数 | 控制范围 | 控制精度 | 测量参数 | 控制范围 | 控制精度 |
---|---|---|---|---|---|
环境室温度/℃ | -40~55 | ±0.1℃ | 环境室湿度 | 20%~90% | ±0.1℃(WB) |
最大制热量/kW | 30 | ±1.5% | 最大风量/(m3/h) | 12000 | ±1% |
温度/℃ | -50~200 | ±0.5℃ | 质量流量/(kg/h) | 0~150, 0~500 | ±0.2% |
压力/MPa | 0~3.0, 0~4.5 | ±0.5% | 压缩机功率/kW | 0~15 | ±0.2% |
车外干球温度/℃ | 车内干球温度/℃ | 实际余热量/kW | 车外侧风量/(m3/h) | 车内侧风量/(m3/h) | 压缩机频率/Hz |
---|---|---|---|---|---|
7 | 20 | 0.9,1.2,1.8 | 7000 | 5000 | 50 |
0 | 20 | 0.9,1.2,1.8 | 7000 | 5000 | 60 |
-10 | 20 | 0.9,1.2,1.8 | 7000 | 5000 | 60 |
-20 | 20 | 0.9,1.2,1.8 | 7000 | 4000 | 60 |
Table 4 Experimental working conditions of vapor injection heat pump for electric bus
车外干球温度/℃ | 车内干球温度/℃ | 实际余热量/kW | 车外侧风量/(m3/h) | 车内侧风量/(m3/h) | 压缩机频率/Hz |
---|---|---|---|---|---|
7 | 20 | 0.9,1.2,1.8 | 7000 | 5000 | 50 |
0 | 20 | 0.9,1.2,1.8 | 7000 | 5000 | 60 |
-10 | 20 | 0.9,1.2,1.8 | 7000 | 5000 | 60 |
-20 | 20 | 0.9,1.2,1.8 | 7000 | 4000 | 60 |
1 | 刘卓然, 陈健, 林凯, 等. 国内外电动汽车发展现状与趋势[J]. 电力建设, 2015, 36(7): 25-32. |
Liu Z R, Chen J, Lin K, et al. Domestic and foreign present situation and the tendency of electric vehicles [J]. Electric Power Construction, 2015, 36(7): 25-32. | |
2 | Yuan X L, Liu X, Zuo J. The development of new energy vehicles for a sustainable future: a review [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 298-305. |
3 | 孙北方. PTC热敏陶瓷加热元件在汽车中的应用[J]. 电子制作, 2000, (11): 12. |
Sun B F. Application of PTC thermal ceramic heating element in automobile [J]. Electronics Practice, 2000, (11): 12. | |
4 | 王鹏程. PTC热敏元件的进展与发展趋势[J]. 电子元件与材料, 1995, 14(3): 1-8. |
Wang P C. Progress and development trends in PTC thermistors [J]. Electronic Components and Materials, 1995, 14(3): 1-8. | |
5 | 史保新, 马国远, 陈观生. 电动车用空调装置的研究[J]. 流体机械, 2002, 30(4): 48-50, 37. |
Shi B X, Ma G Y, Chen G S. Research on heat pump system for electric vehicle air conditioning [J]. Fluid Machinery, 2002, 30(4): 48-50, 37. | |
6 | Peng Q H, Du Q G. Progress in heat pump air conditioning systems for electric vehicles — a review [J]. Energies, 2016, 9(4): 240. |
7 | Malik T N, Bullard C W. Air conditioning hybrid electric vehicles while stopped in traffic [R]. Air Conditioning and Refrigeration Center, University of Illinois, 2004. |
8 | Qi Z G. Advances on air conditioning and heat pump system in electric vehicles - a review [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 754-764. |
9 | 柴沁虎, 马国远. 空气源热泵低温适应性研究的现状及进展[J]. 能源工程, 2002, (5): 25-31. |
Chai Q H, Ma G Y. State of knowledge and current challenges in the ASHP developed for the cold areas [J]. Energy Engineering, 2002, (5): 25-31. | |
10 | 马国远, 邵双全. 寒冷地区空调用热泵的研究[J]. 太阳能学报, 2002, 23(1): 17-21. |
Ma G Y, Shao S Q. Research on heat pump cycle for air conditioning in cold regions [J]. Acta Energiae Solaris Sinica, 2002, 23(1): 17-21. | |
11 | 陈浩. 大型电动客车热泵空调系统设计与试验研究[D]. 郑州: 中原工学院, 2016. |
Chen H. Performance evaluation and design of heat pump air conditioning for electric bus [D]. Zhengzhou: Zhongyuan University of Technology, 2016. | |
12 | 张东京. 纯电动客车超低温热泵型空调系统结融霜特性研究[D]. 郑州: 中原工学院, 2019. |
Zhang D J. Study on frosting characteristics of ultra-low temperature heat pump air conditioning system for pure electric bus [D]. Zhengzhou: Zhongyuan University of Technology, 2019. | |
13 | 周光辉, 禹佩利, 李海军, 等. 带经济器的热泵型纯电动客车空调系统结霜特性研究[J]. 低温与超导, 2019, 47(8): 75-79. |
Zhou G H, Yu P L, Li H J, et al. Study on frosting performance of heat pump air conditioning system with economizer for only electric-driven vehicle [J]. Cryogenics & Superconductivity, 2019, 47(8): 75-79. | |
14 | Han X X, Zou H M, Xu H B, et al. Experimental study on vapor injection air source heat pump with internal heat exchanger for electric bus [J]. Energy Procedia, 2019, 158: 4147-4153. |
15 | Han X X, Zou H M, Tian C Q, et al. Numerical study on the heating performance of a novel integrated thermal management system for the electric bus [J]. Energy, 2019, 186: 115812. |
16 | Shams-Zahraei M, Kouzani A Z, Kutter S, et al. Integrated thermal and energy management of plug-in hybrid electric vehicles [J]. Journal of Power Sources, 2012, 216: 237-248. |
17 | Bennion K, Thornton M. Integrated vehicle thermal management for advanced vehicle propulsion technologies [C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010: 2010-01-0836. |
18 | Pesaran A A. Battery thermal models for hybrid vehicle simulations [J]. Journal of Power Sources, 2002, 110(2): 377-382. |
19 | Kim S C, Kim M S, Hwang I C, et al. Heating performance enhancement of a CO2 heat pump system recovering stack exhaust thermal energy in fuel cell vehicles [J]. International Journal of Refrigeration, 2007, 30(7): 1215-1226. |
20 | Kim S C, Kim M S, Hwang I C, et al. Performance evaluation of a CO2 heat pump system for fuel cell vehicles considering the heat exchanger arrangements [J]. International Journal of Refrigeration, 2007, 30(7): 1195-1206. |
21 | Ahn J H, Kang H, Lee H S, et al. Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles [J]. Applied Energy, 2014, 119: 1-9. |
22 | Cho C W, Lee H S, Won J P, et al. Measurement and evaluation of heating performance of heat pump systems using wasted heat from electric devices for an electric bus [J]. Energies, 2012, 5(3): 658-669. |
23 | Zou H M, Jiang B, Wang Q, et al. Performance analysis of a heat pump air conditioning system coupling with battery cooling for electric vehicles [J]. Energy Procedia, 2014, 61: 891-894. |
24 | 钱程, 谷波, 田镇, 等. 纯电动汽车双热源热泵系统性能分析[J]. 上海交通大学学报, 2016, 50(4): 569-574. |
Qian C, Gu B, Tian Z, et al. Performance analysis of dual source heat pump in electric vehicles [J]. Journal of Shanghai Jiao Tong University, 2016, 50(4): 569-574. | |
25 | 李萍, 谷波, 缪梦华. 废热回收型纯电动汽车热泵系统试验研究[J]. 上海交通大学学报, 2019, 53(4): 468-472. |
Li P, Gu B, Miao M H. Experimental research on waste-heat recovery heat pump system in electric vehicles [J]. Journal of Shanghai Jiao Tong University, 2019, 53(4): 468-472. | |
26 | 张桂英. 纯电动汽车一体式热管理及节能技术研究[D]. 北京: 中国科学院大学, 2017. |
Zhang G Y. Research on integrated thermal management and energy saving technology for pure electric vehicles [D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
27 | Zhang L, Hashimoto K, Hasegawa H, et al. Performance analysis of a heat pump system with integrated desiccant for electric vehicles [J]. International Journal of Refrigeration, 2018, 86: 154-162. |
28 | Tian Z, Gan W, Zhang X L, et al. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle [J]. Applied Thermal Engineering, 2018, 136: 16-27. |
29 | Lee D Y, Cho C W, Won J P, et al. Performance characteristics of mobile heat pump for a large passenger electric vehicle [J]. Applied Thermal Engineering, 2013, 50(1): 660-669. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[7] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[10] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[11] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[12] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[13] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[14] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[15] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||