CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5106-5117.DOI: 10.11949/0438-1157.20221084
• Energy and environmental engineering • Previous Articles Next Articles
Haocheng WANG1(), Jingyao YANG1,2, Xueqiang DONG1(), Hao GUO1, Yanxing ZHAO1, Maoqiong GONG1,2()
Received:
2022-08-01
Revised:
2022-09-26
Online:
2022-12-06
Published:
2022-11-05
Contact:
Xueqiang DONG, Maoqiong GONG
王昊成1(), 杨敬瑶1,2, 董学强1(), 郭浩1, 赵延兴1, 公茂琼1,2()
通讯作者:
董学强,公茂琼
作者简介:
王昊成(1991—),男,博士,助理研究员,wanghc@mail.ipc.ac.cn
基金资助:
CLC Number:
Haocheng WANG, Jingyao YANG, Xueqiang DONG, Hao GUO, Yanxing ZHAO, Maoqiong GONG. Thermodynamic analysis and optimization of 10 t/d hydrogen liquefaction process[J]. CIESC Journal, 2022, 73(11): 5106-5117.
王昊成, 杨敬瑶, 董学强, 郭浩, 赵延兴, 公茂琼. 10 t/d级氢液化装置流程热力分析与优化[J]. 化工学报, 2022, 73(11): 5106-5117.
Add to citation manager EndNote|Ris|BibTeX
流程构型 | 技术特点 |
---|---|
L-H循环 (节流循环) | 用于早期或微小型液化装置,能耗较高,目前已少见应用 |
氦膨胀制冷循环 | 主要用于< 2.5 t/d的小型氢液化装置;能耗一般高于氢膨胀制冷 |
氢膨胀制冷循环 | 现有≥5 t/d大型氢液化装置的主流流程(双压Claude循环等) |
新型循环 (J-B循环等) | 液体/两相膨胀机等技术尚未突破,设备初投资高、技术风险大,无实际应用 |
Table 1 Comparison of several hydrogen liquefaction processes
流程构型 | 技术特点 |
---|---|
L-H循环 (节流循环) | 用于早期或微小型液化装置,能耗较高,目前已少见应用 |
氦膨胀制冷循环 | 主要用于< 2.5 t/d的小型氢液化装置;能耗一般高于氢膨胀制冷 |
氢膨胀制冷循环 | 现有≥5 t/d大型氢液化装置的主流流程(双压Claude循环等) |
新型循环 (J-B循环等) | 液体/两相膨胀机等技术尚未突破,设备初投资高、技术风险大,无实际应用 |
参数 | 两组串联 | 两组并联 |
---|---|---|
进口压力/bar | 24.68 | 24.71 |
进口温度/K | 65.05 | 75.74 |
出口压力/bar | 18.50 | 13.84 |
出口温度/K | 59.15 | 63.02 |
进出口焓降, Δh/(kJ/kg) | 52.34 | 120.04 |
最大线速度, u/(m/s) | 220.01 | 333.19 |
理论转速, ω/(r/min) | 70031 | 106065 |
Table 2 Main parameter comparison of hydrogen expander units under typical operation conditions
参数 | 两组串联 | 两组并联 |
---|---|---|
进口压力/bar | 24.68 | 24.71 |
进口温度/K | 65.05 | 75.74 |
出口压力/bar | 18.50 | 13.84 |
出口温度/K | 59.15 | 63.02 |
进出口焓降, Δh/(kJ/kg) | 52.34 | 120.04 |
最大线速度, u/(m/s) | 220.01 | 333.19 |
理论转速, ω/(r/min) | 70031 | 106065 |
流程参数 | 计算结果 |
---|---|
最大液化量/(L/h) | 7812.31 |
液氢质量流量/(g/s) | 150.00 |
原料氢压力/bar | 25.00 |
循环氢质量流量/(g/s) | 845.40 |
总UA值/(kW/K) | 617.63 |
液氮耗量/(L/h) | 5810.12 |
氢循环理论功耗/kW | 3347.00 |
氢循环理论比功耗/(kWh/kg LH2) | 6.20 |
预冷理论比功耗/(kWh/kg LH2) | 4.30 |
总理论比功耗/(kWh/kg LH2) | 10.50 |
流程㶲效率/% | 35.06 |
Table 3 Main thermodynamic parameters of 10 t/d hydrogen liquefaction process under basic operation conditions
流程参数 | 计算结果 |
---|---|
最大液化量/(L/h) | 7812.31 |
液氢质量流量/(g/s) | 150.00 |
原料氢压力/bar | 25.00 |
循环氢质量流量/(g/s) | 845.40 |
总UA值/(kW/K) | 617.63 |
液氮耗量/(L/h) | 5810.12 |
氢循环理论功耗/kW | 3347.00 |
氢循环理论比功耗/(kWh/kg LH2) | 6.20 |
预冷理论比功耗/(kWh/kg LH2) | 4.30 |
总理论比功耗/(kWh/kg LH2) | 10.50 |
流程㶲效率/% | 35.06 |
文献 | 流程结构 | 设计产量/(t/d) | 功耗/(kWh/kg) |
---|---|---|---|
[ | 液氮预冷的双压Claude流程(模拟值) | 2.63 | 10.85 |
[ | 液氮预冷的氦气膨胀 制冷流程(模拟值) | 1.51 | 10.25 |
[ | 混合工质预冷的四级 J-B流程(模拟值) | 100 | 5.91 |
[ | 液氮预冷的双压Claude流程(实测值) | 5.00 | 11.90 |
[ | 液氮预冷的氦气膨胀 制冷流程(实测值) | 约1.5 | 约17 |
本文 | 液氮预冷的双压Claude流程(模拟值) | 12.96 | 10.50 |
Table 4 Main parameter comparison of hydrogen expander units under typical operation conditions
文献 | 流程结构 | 设计产量/(t/d) | 功耗/(kWh/kg) |
---|---|---|---|
[ | 液氮预冷的双压Claude流程(模拟值) | 2.63 | 10.85 |
[ | 液氮预冷的氦气膨胀 制冷流程(模拟值) | 1.51 | 10.25 |
[ | 混合工质预冷的四级 J-B流程(模拟值) | 100 | 5.91 |
[ | 液氮预冷的双压Claude流程(实测值) | 5.00 | 11.90 |
[ | 液氮预冷的氦气膨胀 制冷流程(实测值) | 约1.5 | 约17 |
本文 | 液氮预冷的双压Claude流程(模拟值) | 12.96 | 10.50 |
1 | Aasadnia M, Mehrpooya M. Large-scale liquid hydrogen production methods and approaches: a review[J]. Applied Energy, 2018, 212: 57-83. |
2 | Ohlig K, Decker L. The latest developments and outlook for hydrogen liquefaction technology[J]. AIP Conference Proceedings, 2014, 1573(1): 1311-1317. |
3 | Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
4 | 唐璐, 邱利民, 姚蕾, 等. 氢液化系统的研究进展与展望[J]. 制冷学报, 2011, 32(6): 1-8. |
Tang L, Qiu L M, Yao L, et al. Review on research and developments of hydrogen liquefaction systems[J]. Journal of Refrigeration, 2011, 32(6): 1-8. | |
5 | 陈双涛, 周楷淼, 赖天伟, 等. 大规模氢液化方法与装置[J]. 真空与低温, 2020, 26(3): 173-178. |
Chen S T, Zhou K M, Lai T W, et al. Large-scale hydrogen liquefaction methods and devices[J]. Vacuum and Cryogenics, 2020, 26(3): 173-178. | |
6 | Moradi R, Groth K M. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269. |
7 | Ni M. An overview of hydrogen storage technologies [J]. Energy Exploration & Exploitation, 2006, 24(3): 197-209. |
8 | 张祉祐. 低温技术原理与装置[M]. 北京:机械工业出版社, 1987. |
Zhang Z Y. Principle and Equipment of Cryogenic Technology[M]. Beijing: China Machine Press, 1987. | |
9 | Garceau N M, Baik J H, Lim C M, et al. Development of a small-scale hydrogen liquefaction system[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11872-11878. |
10 | 曹学文, 杨健, 边江, 等. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669. |
Cao X W, Yang J, Bian J, et al. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. | |
11 | 吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18. |
Lyu C, Wang J Z, Zhu W P, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology[J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18. | |
12 | 殷靓, 巨永林. 氢液化流程设计和优化方法研究进展[J]. 制冷学报, 2020, 41(3): 1-10. |
Yin L, Ju Y L. Review on researches and developments of the design and optimization for hydrogen liquefaction processes[J]. Journal of Refrigeration, 2020, 41(3): 1-10. | |
13 | Staats W L. Analysis of a supercritical hydrogen liquefaction cycle[D]. Cambridge: Massachusetts Institute of Technology, 2008. |
14 | Yuksel Y E, Ozturk M, Dincer I. Analysis and assessment of a novel hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11429-11438. |
15 | 殷靓, 巨永林, 王刚. 1, 000 L/h氢液化装置工艺流程分析及优化[J]. 制冷技术, 2019, 39(1): 39-44. |
Yin L, Ju Y L, Wang G. Process analysis and optimization of 1, 000 L/h hydrogen liquefaction system[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 39-44. | |
16 | 唐璐. 基于液氮预冷的氢液化流程设计及系统模拟[D]. 杭州: 浙江大学, 2012. |
Tang L. Design and simulation of a hydrogen liquefaction cycle based on liquid nitrogen precooling[D]. Hangzhou: Zhejiang University, 2012. | |
17 | Baker C R, Shaner R L. A study of the efficiency of hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 1978, 3(3): 321-334. |
18 | Stang J, Nekså P, Brendeng E. On the design of an efficient hydrogen liquefaction process[C]//Proceeding of the 16th World Hydrogen Energy Conference. 2006. |
19 | Krasae-in S, Stang J H, Neksa P. Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12531-12544. |
20 | Ansarinasab H, Mehrpooya M, Mohammadi A. Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system[J]. Journal of Cleaner Production, 2017, 144: 248-259. |
21 | Kuendig A, Loehlein K, Kramer G J, et al. Large scale hydrogen liquefaction in combination with LNG re-gasification[C]//Proceedings of the 16th World Hydrogen Energy Conference. 2006: 3326-3333. |
22 | Cardella U, Decker L, Sundberg J, et al. Process optimization for large-scale hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12339-12354. |
23 | Asadnia M, Mehrpooya M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15564-15585. |
24 | Gross R, Otto W, Patzelt A, et al. Liquid hydrogen for Europe—the Linde plant at Ingolstadt [J]. Linde-Reports on Science and Technology, 1994, 54: 37-43. |
25 | Bracha M, Lorenz G, Patzelt A, et al. Large-scale hydrogen liquefaction in Germany[J]. International Journal of Hydrogen Energy, 1994, 19(1): 53-59. |
26 | Leachman J W, Jacobsen R T, Penoncello S G, et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen[J]. Journal of Physical and Chemical Reference Data, 2009, 38(3): 721-748. |
27 | Zhuzhgov A V, Krivoruchko O P, Isupova L A, et al. Low-temperature conversion of ortho-hydrogen into liquid para-hydrogen: process and catalysts. Review[J]. Catalysis in Industry, 2018, 10(1):9-19. |
28 | 杨晓阳, 杨昌乐. 正仲氢转化催化剂性能研究[J]. 化学推进剂与高分子材料, 2018, 16(3): 79-82. |
Yang X Y, Yang C L. Study on performance of orthohydrogen-parahydrogen converting catalyst[J]. Chemical Propellants & Polymeric Materials, 2018, 16(3): 79-82. | |
29 | Jacobsen R T, Stewart R B. Thermodynamic properties of nitrogen including liquid and vapor phases from[J]. Journal of Physical and Chemical Reference Data, 1973, 2(4): 757-922. |
30 | Lemmon E W, Huber M L, McLinden M O. NIST standard reference database 23: reference fluid thermodynamic and transport properties (REFPROP), version 9.0[DB]. Gaithersburg: National Institute of Standards and Technology, 2010. |
31 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
32 | Kwak T Y, Mansoori G A. van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling[J]. Chemical Engineering Science, 1986, 41(5): 1303-1309. |
33 | Box M J. A new method of constrained optimization and a comparison with other methods[J]. The Computer Journal, 1965, 8(1): 42-52. |
34 | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
35 | 徐攀, 文键, 厉彦忠, 等. 氢正仲转化耦合流动换热板翅式换热器研究[J]. 西安交通大学学报, 2021, 55(12): 16-24. |
Xu P, Wen J, Li Y Z, et al. Study on hydrogen ortho-para conversion coupled with flow and heat transfer of the plate fin heat exchanger[J]. Journal of Xi’an Jiaotong University, 2021, 55(12): 16-24. | |
36 | 李启铭, 张磊, 徐攀, 等. 氢液化流程中催化换热一体化可行性研究[J]. 化学工程, 2021, 49(7): 26-30. |
Li Q M, Zhang L, Xu P, et al. Feasibility on integration of catalysis and heat transfer in hydrogen liquefaction process[J]. Chemical Engineering (China), 2021, 49(7): 26-30. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[5] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[8] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[9] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[10] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[11] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[12] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[13] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[14] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[15] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||