1 |
Candler G V. Rate effects in hypersonic flows [J]. Annual Review of Fluid Mechanics, 2019, 51: 379-402.
|
2 |
中国人民解放军总装备部军事训练教材编辑工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003.
|
|
Military Training Textbook Editing Committee of the General Armament Department, PLA. Hypersonic Aerodynamic Heating and Thermal Protection [M]. Beijing: National Defense Industry Press, 2003.
|
3 |
桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 114702.
|
|
Gui Y W. Combined thermal phenomena of hypersonic vehicle [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(11): 114702.
|
4 |
杨肖峰. 火星进入器高超声速气动加热与耦合热效应研究[D]. 绵阳: 中国空气动力研究与发展中心, 2017.
|
|
Yang X F. Hypersonic aerodynamic heating characteristics and coupling thermal effects for Mars entry vehicles [D]. Mianyang: China Aerodynamic Research and Development Center, 2017.
|
5 |
Dechaumphai P, Thornton E A, Wieting A R. Flow-thermal-structural study of aerodynamically heated leading edges [J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209.
|
6 |
Zuppardi G, Savino R, Mongelluzzo G. Aero-thermo-dynamic analysis of a low ballistic coefficient deployable capsule in Earth re-entry [J]. Acta Astronautica, 2016, 127: 593-602.
|
7 |
McNamara J J, Friedmann P P. Aeroelastic and aerothermoelastic behavior in hypersonic flow [J]. AIAA Journal, 2008, 46(10): 2591-2610.
|
8 |
Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena [M]. New York: John Wiley & Sons, 2007.
|
9 |
Anderson J D. Hypersonic and High-Temperature Gas Dynamics [M]. Reston: American Institute of Aeronautics and Astronautics, 2009.
|
10 |
杨肖峰, 唐伟, 桂业伟, 等. 火星环境高超声速催化加热特性[J]. 宇航学报, 2017, 38(2): 205-211.
|
|
Yang X F, Tang W, Gui Y W, et al. Hypersonic catalytic aeroheating characteristics for Mars entry process [J]. Chinese Journal of Astronautics, 2017, 38(2): 205-211.
|
11 |
杨肖峰, 国义军, 唐伟, 等. 进入火星大气的高温真实气体效应与气动加热研究[J]. 宇航学报, 2018, 39(9): 959-967.
|
|
Yang X F, Guo Y J, Tang W, et al. High-temperature real-gas effects and aerodynamic heating for capsules entering Martian atmosphere [J]. Chinese Journal of Astronautics, 2018, 39(9): 959-967.
|
12 |
Chen Y K, Henline W D, Tauber H E. Mars pathfinder trajectory based heating and ablation calculations [J]. Journal of Spacecraft and Rockets, 1995, 32(2): 225-230.
|
13 |
Milos F S, Rasky D J. Review of numerical procedures for computational surface thermochemistry [J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 24-34.
|
14 |
Milos F S, Chen Y K, Congdon W M, et al. Mars pathfinder entry temperature data, aerothermal heating, and heatshield material response [J]. Journal of Spacecraft and Rockets, 1999, 36(3): 380-391.
|
15 |
Yang X F, Gui Y W, Tang W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow [J]. Acta Astronautica, 2018, 147: 445-453.
|
16 |
杨肖峰, 桂业伟, 刘磊, 等. 表面催化特性对火星进入气固耦合热效应的影响研究[J]. 中国科学(技术科学), 2018, 48(9): 939-949.
|
|
Yang X F, Gui Y W, Liu L, et al. Influence of surface catalysis on coupled aerodynamic heating for Mars entries [J]. Scientia Sinica Technologica, 2018, 48(9): 939-949.
|
17 |
桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, (7): 20844.
|
|
Gui Y W, Liu L, Dai G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 20844.
|
18 |
耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, (4): 51-56.
|
|
Geng X R, Zhang H X, Shen Q, et al. Study on a integrated algorithm for the flowfields of high-speed vehicles and heat transfer in the solid structures [J]. Acta Aerodynamica Sinica, 2002, (4): 51-56.
|
19 |
刘深深, 唐伟, 桂业伟, 等. 一种多场耦合数据传递新方法[J]. 宇航学报, 2016, 37(1): 61-66.
|
|
Liu S S, Tang W, Gui Y W, et al. A new data transfer method in fluid-thermal-structure coupling problems [J]. Chinese Journal of Astronautics, 2016, 37(1): 61-66.
|
20 |
Josyula E. Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances [M]. Reston: American Institute of Aeronautics and Astronautics, 2015.
|
21 |
Marschall J, MacLean M. Finite-rate surface chemistry model (I): Formulation and reaction system examples [C]// 42nd AIAA Thermophysics Conference. Honolulu, 2011.
|
22 |
Wright M J, Tang C Y, Edquist K T, et al. A review of aerothermal modeling for Mars entry missions [C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, 2010.
|
23 |
Park C, Howe J T, Jaffe R L, et al. Review of chemical-kinetic problems of future NASA missions (Ⅱ): Mars entries [J]. Journal of Thermophysics and Heat Transfer, 1994, 8: 9-23.
|
24 |
Suzuki K, Abe T. Thermochemical nonequilibrium viscous shock-layer analysis for a Mars aerocapture vehicle [J]. Journal of Thermophysics and Heat Transfer, 1994, 8: 773-780.
|
25 |
杨肖峰, 桂业伟, 邱波, 等. 高焓CO2气流壁面两步催化机制对非平衡气动加热影响的数值模拟[J]. 国防科技大学学报, 2020, 42(1): 108-116.
|
|
Yang X F, Gui Y W, Qiu B, et al. Numerical investigation on influence of surface two-step catalytic mechanism on non-equilibrium aerodynamic heating for high-enthalpy CO2 flow [J]. Journal of National University of Defense Technology, 2020, 42(1): 108-116.
|
26 |
Blottner F G, Johnson M, Ellis M. Chemically reacting viscous flow program for multicomponent gas mixtures [R]. Sandia Laboratories, 1971.
|
27 |
Wilke C R. A viscosity equation for gas mixtures [J]. Journal of Chemical Physics, 1950, 18: 517-518.
|
28 |
Milos F S, Chen Y K, Congdon W M, et al. Mars pathfinder entry temperature data aerothermal heating and heatsheild material response [J]. Journal of Spacecraft and Rockets, 1999, 36(3): 380-391.
|
29 |
MacLean M, Wadhams T, Holden M. Investigation of blunt bodies with CO2 test gas including catalytic effects [C]// 38th AIAA Thermophysics Conference. Toronto, 2005.
|
30 |
Thornton E A, Dechaumphai P. Coupled flow thermal and structural analysis of aerodynamically heated panels [J]. Journal of Aircraft, 1988, 25: 1052-1059.
|