CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3270-3277.DOI: 10.11949/0438-1157.20201433
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
WANG Xiangyang1(),NIAN Yongle1,LIU Na2,CHENG Wenlong1(
)
Received:
2020-10-15
Revised:
2020-12-09
Online:
2021-06-05
Published:
2021-06-05
Contact:
CHENG Wenlong
通讯作者:
程文龙
作者简介:
王湘阳(1995—),男,硕士研究生,基金资助:
CLC Number:
WANG Xiangyang, NIAN Yongle, LIU Na, CHENG Wenlong. Novel ablation model of silica-reinforced composites considering C-SiO2 reaction[J]. CIESC Journal, 2021, 72(6): 3270-3277.
王湘阳, 年永乐, 刘娜, 程文龙. 考虑C-SiO2反应的新型硅基材料烧蚀分析模型[J]. 化工学报, 2021, 72(6): 3270-3277.
No. | q0/ (kW/m2) | hs/ (kJ/kg) | Pe×10-5/ Pa | (due/dx)/ s-1 | P"×10-6/(Pa/m2) | v-∞/ (mm/s) |
---|---|---|---|---|---|---|
1 | 11664 | 11053 | 1.61 | 130110 | -1.275 | 0.477 |
2 | 15217 | 14235 | 1.63 | 163490 | 0.986 | 0.590 |
3 | 12987 | 12058 | 1.52 | 125800 | 1.261 | 0.500 |
4 | 15219 | 14987 | 1.55 | 138500 | 1.343 | 0.600 |
Table 1 Tests’ states and measurement data
No. | q0/ (kW/m2) | hs/ (kJ/kg) | Pe×10-5/ Pa | (due/dx)/ s-1 | P"×10-6/(Pa/m2) | v-∞/ (mm/s) |
---|---|---|---|---|---|---|
1 | 11664 | 11053 | 1.61 | 130110 | -1.275 | 0.477 |
2 | 15217 | 14235 | 1.63 | 163490 | 0.986 | 0.590 |
3 | 12987 | 12058 | 1.52 | 125800 | 1.261 | 0.500 |
4 | 15219 | 14987 | 1.55 | 138500 | 1.343 | 0.600 |
No. | v-∞实验值/(mm/s) | 修正前烧蚀速率 | 修正后烧蚀速率 | ||
---|---|---|---|---|---|
计算值/(mm/s) | 相对误差/% | 计算值/(mm/s) | 相对误差% | ||
1 | 0.477 | 0.895 | 87.6 | 0.443 | 7.1 |
2 | 0.590 | 1.048 | 77.6 | 0.604 | 2.3 |
3 | 0.500 | 0.945 | 89.0 | 0.504 | 0.8 |
4 | 0.600 | 1.055 | 75.8 | 0.611 | 1.8 |
Table 2 Comparison between measured results and simulated values
No. | v-∞实验值/(mm/s) | 修正前烧蚀速率 | 修正后烧蚀速率 | ||
---|---|---|---|---|---|
计算值/(mm/s) | 相对误差/% | 计算值/(mm/s) | 相对误差% | ||
1 | 0.477 | 0.895 | 87.6 | 0.443 | 7.1 |
2 | 0.590 | 1.048 | 77.6 | 0.604 | 2.3 |
3 | 0.500 | 0.945 | 89.0 | 0.504 | 0.8 |
4 | 0.600 | 1.055 | 75.8 | 0.611 | 1.8 |
1 | Natali M, Kenny J M, Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review[J]. Progress in Materials Science, 2016, 84: 192-275. |
2 | 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8): 6-22. |
Xie W H, Han G K, Meng S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 6-22. | |
3 | 姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003: 52-93. |
Jiang G Q, Liu L Y. Heat Transfer of Hypersonic Gas and Ablation Thermal Protection[M]. Beijing: National Defense Industry Press, 2003: 52-93. | |
4 | 薛华飞, 姚秀荣, 程海明, 等. 热防护用轻质烧蚀材料现状与发展[J]. 哈尔滨理工大学学报, 2017, 22(1): 123-128. |
Xue H F, Yao X R, Cheng H M, et al. Current situation development of lightweight ablation materials for thermal protection[J]. Journal of Harbin University of Science and Technology, 2017, 22(1): 123-128. | |
5 | 欧东斌, 陈连忠, 陈海群, 等. 硅基复合材料烧蚀特性试验研究[J]. 宇航材料工艺, 2009, 39(1): 85-87, 90. |
Ou D B, Chen L Z, Chen H Q, et al. Ablation properties of silicon based composites[J]. Aerospace Materials & Technology, 2009, 39(1): 85-87, 90. | |
6 | 孙冰, 林小树, 刘小勇, 等. 硅基材料烧蚀模型研究[J]. 宇航学报, 2003, 24(3): 282-286, 308. |
Sun B, Lin X S, Liu X Y, et al. Study on ablation model of silica-reinforced composites[J]. Journal of Astronautics, 2003, 24(3): 282-286, 308. | |
7 | 时圣波, 梁军, 方国东. 热物理性能对高硅氧/酚醛复合材料烧蚀性能的影响[J]. 固体火箭技术, 2011, 34(3): 354-359. |
Shi S B, Liang J, Fang G D. Effect of thermal physical properties on ablation properties of high silica/phenolic composite[J]. Journal of Solid Rocket Technology, 2011, 34(3): 354-359. | |
8 | Johnston C O, Gnoffo P A, Sutton K. Influence of ablation on radiative heating for earth entry[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 481-491. |
9 | 俞继军, 姜贵庆, 李仲平. 高黏度SiO2材料烧蚀传热机理及试验验证[J]. 空气动力学学报, 2008, 26(4): 462-465. |
Yu J J, Jiang G Q, Li Z P. Ablation and heat conduction mechanism and test validation of high viscosity SiO2 materials[J]. Acta Aerodynamica Sinica, 2008, 26(4): 462-465. | |
10 | 易法军, 梁军, 孟松鹤, 等. 防热复合材料的烧蚀机理与模型研究[J]. 固体火箭技术, 2000, 23(4): 48-56. |
Yi F J, Liang J, Meng S H, et al. Study on ablation mechanism and models of heatshield composites[J]. Journal of Solid Rocket Technology, 2000, 23(4): 48-56. | |
11 | Bethe H A, Adams M C. A theory for the ablation of glassy materials[J]. Journal of the Aerospace Sciences, 1959, 26(6): 321-328. |
12 | Adams M C. Recent advances in ablation[J]. ARS Journal, 1959, 29(9): 625-632. |
13 | 时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热-力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
Shi S B. Ablation mechanism and thermo-mechanical behavior of silica/phenolic composites[D]. Harbin: Harbin Institute of Technology, 2013. | |
14 | Rosensweig R E, Beecher N. Theory for the ablation of fiberglass-reinforced phenolic resin[J]. AIAA Journal, 1963, 1(8): 1802-1809. |
15 | Li J, Xi K, Lv X, et al. Characteristics and formation mechanism of compact/porous structures in char layers of EPDM insulation materials[J]. Carbon, 2018, 127: 498-509. |
16 | Henderson J B, Tant M R. A study of the kinetics of high-temperature carbon-silica reactions in an ablative polymer composite[J]. Polymer Composites, 1983, 4(4): 233-237. |
17 | Shi S B, Li L J, Liang J, et al. Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1190-1198. |
18 | 时圣波, 梁军, 刘志刚, 等. 高硅氧/酚醛复合材料烧蚀环境下的吸热机理[J]. 固体火箭技术, 2013, 36(1): 113-118. |
Shi S B, Liang J, Liu Z G, et al. Endothermic mechanism of silica/phenolic composite under ablative environment[J]. Journal of Solid Rocket Technology, 2013, 36(1): 113-118. | |
19 | Beecher N, Rosensweig R E. Ablation mechanisms in plastics with inorganic reinforcement[J]. ARS Journal, 1961, 31(4): 532-539. |
20 | 马伟, 王苏, 崔季平, 等. 酚醛树酯的热解动力学模型[J]. 物理化学学报, 2008, 24(6): 1090-1094. |
Ma W, Wang S, Cui J P, et al. Thermal decomposition kinetic model of phenolic resin[J]. Acta Physico-Chimica Sinica, 2008, 24(6): 1090-1094. | |
21 | Jiang H Y, Wang J G, Wu S Q, et al. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry[J]. Carbon, 2010, 48(2): 352-358. |
22 | Bessire B K, Lahankar S A, Minton T K. Pyrolysis of phenolic impregnated carbon ablator (PICA)[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1383-1395. |
23 | 张涛. 热解气体流动的二维烧蚀热防护数值仿真研究[J]. 宇航学报, 2014, 35(1): 119-124. |
Zhang T. Numerical simulation research on two-dimensional ablative thermal protection with pyrolysis gas flow[J]. Journal of Astronautics, 2014, 35(1): 119-124. | |
24 | Amar A J, Blackwell B F, Edwards J R. Development and verification of a one-dimensional ablation code including pyrolysis gas flow[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(1): 59-71. |
25 | Hidalgo H, Kadanoff L P. Comparison between theory and flight ablation data[J]. AIAA Journal, 1963, 1(1): 41-45. |
26 | Zien T F, Wei C Y. Heat transfer in the melt layer of a simple ablation model[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 450-459. |
27 | Milos F S, Chen Y K. Ablation and thermal response property model validation for phenolic impregnated carbon ablator[J]. Journal of Spacecraft and Rockets, 2010, 47(5): 786-805. |
28 | Kendall R M, Rindal R A, Bartlett E P. A multicomponent boundary layer chemically coupled to an ablating surface[J]. AIAA Journal, 1967, 5(6): 1063-1071. |
29 | Lachaud J, Mansour N N. Porous-material analysis toolbox based on OpenFOAM and applications[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(2): 191-202. |
30 | 姜贵庆, 李仲平, 俞继军. 硅基复合材料黏性系数的参数辨识[J]. 空气动力学学报, 2008, 26(4): 452-455. |
Jiang G Q, Li Z P, Yu J J. The parameter identification of viscosity coefficient for SiO2 matrix composites[J]. Acta Aerodynamica Sinica, 2008, 26(4): 452-455. | |
31 | Fay J A, Riddell F R, Kemp N H. Stagnation point heat transfer in dissociated air flow[J]. Jet Propulsion, 1957, 27(6): 672-674. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 420
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 552
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||