CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3252-3260.DOI: 10.11949/0438-1157.20201573
• Thermodynamics • Previous Articles Next Articles
LI Mingchuan1(),FAN Shuanshi2,XU Fuhai3,YAN Ke4,HUANG Aixian3
Received:
2020-11-03
Revised:
2020-11-27
Online:
2021-06-05
Published:
2021-06-05
Contact:
LI Mingchuan
通讯作者:
李明川
作者简介:
李明川(1976—),男,博士,副教授,基金资助:
CLC Number:
LI Mingchuan, FAN Shuanshi, XU Fuhai, YAN Ke, HUANG Aixian. Mathematical modeling of Stefan phase change for thermal dissociation of natural gas hydrate[J]. CIESC Journal, 2021, 72(6): 3252-3260.
李明川, 樊栓狮, 徐赋海, 严科, 黄爱先. 天然气水合物热分解Stefan相变数学模拟研究[J]. 化工学报, 2021, 72(6): 3252-3260.
初始压力/MPa | 初始温度/℃ | 密度/ (kg/m3) | 液相水合物分解区 热扩散系数/(m2/s) | 固相水合物区热 扩散系数/(m2/s) | 液相水合物分解区 热导率/(W/(m·K)) | 固相水合物区热导率/(W/(m·K)) |
---|---|---|---|---|---|---|
5.55 | 3.50 | 914.7 | 2.89×10-6 | 0.697×10-6 | 5.57 | 2.73 |
Table 1 One dimensional model basic data for thermal dissociation hydrate[26-27]
初始压力/MPa | 初始温度/℃ | 密度/ (kg/m3) | 液相水合物分解区 热扩散系数/(m2/s) | 固相水合物区热 扩散系数/(m2/s) | 液相水合物分解区 热导率/(W/(m·K)) | 固相水合物区热导率/(W/(m·K)) |
---|---|---|---|---|---|---|
5.55 | 3.50 | 914.7 | 2.89×10-6 | 0.697×10-6 | 5.57 | 2.73 |
1 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. New York: CRC Press, 2008: 124-132. |
2 | 李刚, 李小森. 单井热吞吐开采南海神狐海域天然气水合物数值模拟[J]. 化工学报, 2011, 62(2): 458-468. |
Li G, Li X S. Numerical simulation for gas production from hydrate accumulated in Shenhu Area, South China Sea, using huff and puff method[J]. CIESE Journal, 2011, 62(2): 458-468. | |
3 | 韩冬艳. 多孔介质内水合物相变过程渗流特性多尺度研究[D]. 大连: 大连理工大学, 2019. |
Han D Y. Multi-scale study for seepage property of porous medium during hydrate phase change process[D]. Dalian: Dalian University of Technology, 2019. | |
4 | 阮徐可, 李小森, 徐纯刚, 等. 天然气水合物降压联合井壁加热开采的数值模拟[J]. 化工学报, 2015, 66(4): 1544-1550. |
Ruan X K, Li X S, Xu C G, et al. Numerical simulation of gas production from hydrate by depressurization combined with well-wall heating[J]. CIESE Journal, 2015, 66(4): 1544-1550. | |
5 | 郑如意. 天然气水合物藏分解前缘研究[D]. 青岛: 中国石油大学(华东), 2017. |
Zheng R Y. Study on the dissociation front of gas hydrate reservoirs[D]. Qingdao: China University of Petroleum (East China), 2017. | |
6 | Rubinsteǐn L I. The Stefan Problem[M]. Providence: American Mathematical Society, 1971: 24-48. |
7 | Lamé G, Clapeyron B P. Mémoire sur la solidification par refroidissement d'un globe liquid[J]. Annales Chimie Physique, 1831, 47: 250-256. |
8 | Weber H. Die Partiellen Differential-Gleichungen der Mathematischen Physik[M]. 2nd ed. Braunschweig: Vieweg, 1901: 12-16. |
9 | Stefan J. Über die theorie der eisbildung, insbesondere über die eisbildung impolarmeere[J]. Mathem.-naturw, 1889, 98(2A): 965-983. |
10 | Šarler B. Stefan's work on solid-liquid phase changes[J]. Engineering Analysis with Boundary Elements, 1995, 16: 83-92. |
11 | Makogon Y F. Hydrates of Natural Gas[M]. Moscow: Nedra, 1974: 73-90. |
12 | Selim M S, Sloan E D. Modeling of the dissociation of an in-situ hydrate: SPE 13597[R]. Society of Petroleum Engineers, 1985: 75-80. |
13 | Selim M S, Sloan E D. Heat and mass transfer during the dissociation of hydrates in porous media[J]. AIChE Journal, 1989, 35(6): 1049-1052. |
14 | Yousif M H, Li P M, Selim M S, et al. Depressurization of natural gas hydrates in Berea sandstone cores[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1990, 8: 71-88. |
15 | Tsypkin G G. Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs[J]. Fluid Dynamics, 1993, 28(2): 223-229. |
16 | 唐良广, 李刚, 冯自平, 等. 热力法开采天然气水合物的数学模拟[J].天然气工业, 2006, 26(10): 105-107. |
Tang L G, Li G, Feng Z P, et al. Mathematic modeling on thermal recovery of natural gas hydrate[J].Nat. Gas Ind., 2006, 26 (10): 105-107. | |
17 | 李明川, 樊栓狮. 天然气水合物注热水分解径向数学模型[J]. 高校化学工程学报, 2013, 27(5): 761-766. |
Li M C, Fan S S. Radial mathematical model for hot water dissociation frontal brim of natural gas hydrates[J]. J. Chem. Eng. Chin. Univ., 2013, 27(5): 761-766. | |
18 | Li M C, Fan S S, Su Y L, et al. Mathematical models of the heat-water dissociation of natural gas hydrates considering a moving Stefan boundary[J]. Energy, 2015, 90: 202-207. |
19 | Li M C, Fan S S, Su Y L, et al. The Stefan moving boundary models for the heat-dissociation hydrate with a density difference[J]. Energy, 2018, 160: 1124-1132. |
20 | 邵祖亮. 天然气水合物分解过程中的传热传质数值模拟研究[D]. 成都: 西南石油大学, 2017. |
Shao Z L. Numerical simulation of heat and mass transfer in the dissociation of natural gas hydrate[D]. Chengdu: Southwest Petroleum University, 2017. | |
21 | 彭昊, 关富佳. 多孔介质中甲烷水合物一维注热开采实验与数值分析[J]. 科学技术与工程, 2020, 20(26): 10856-10863. |
Peng H, Guan F J. Experimental study and numerical analysis on one-dimensional production by heat injection of methane hydrate in porous media[J]. Science Technology and Engineering, 2020, 20(26): 10856-10863. | |
22 | Hann D W, Özisik M N. Heat Conduction[M]. 3rd ed. New Jersey: John Wiley & Sons Inc., 2012: 33-47. |
23 | Kompiš V. Selected Topics in Boundary Integral Formulations for Solids and Fluids[M]. New York: Springer-Verlag Wien, 2002: 41-50. |
24 | Paterson S. Propagation of a boundary of fusion[J]. Proceedings of the Glasgow Mathematical Association, 1952, 1(1): 42-47. |
25 | 谢文俊, 李小森, 邹颖楠, 等. 含环戊烷体系中二氧化碳水合物形成分解热特性[J]. 化工进展, 2020, 39(1): 129-136. |
Xie W J, Li X S, Zou Y N, et al. Characteristics of carbon dioxide hydrate formation and decomposition with the system of cyclopentane[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 129-136. | |
26 | Kamath V A, Godbole S P. Evaluation of hot brine stimulation technique for gas production from natural gas hydrates: SPE 13596 [R]. Society of Petroleum Engineers, 1987: 1379-1388. |
27 | 张鹏, 叶健, 钱文强. 水合物浆体在水平细管中的流动相变换热[J]. 化工学报, 2014, 65: 101-105. |
Zhang P, Ye J, Qian W Q. Heat transfer characteristics of clathrate hydrate slurry in horizontal mini-tubes[J]. CIESC Journal, 2014, 65: 101-105. | |
28 | Deaton W M, Frost E M. Gas Hydrates and Their Relation to the Operation of Natural Gas Pipelines[M]. Monograph 8. Texas: American Gas Association, 1946: 25-28. |
29 | Clapeyron M C. Mémoire sur la puissance motrice de la chaleur[J].Journal de l'École polytechnique, 1834, 23: 153-190. |
30 | 闫忠元, 陈朝阳, 颜克凤, 等. 盐水体系中环戊烷-甲烷水合物的相平衡及分解热[J]. 化工进展, 2010, 29(6): 1017-1022. |
Yan Z Y, Chen Z Y, Yan K F, et al. Phase equilibrium and dissociation heat of cyclopentane-methane hydrate in NaCl aqueous solution[J]. Chemical Industry and Engineering Progress, 2010, 29(6): 1017-1022. | |
31 | Friedman. Mathematicsin industrial problems[M]//Miller W. The IMA Volumesin Mathematics and Its Applications: Volume16. New York: Springer-Verlag Inc., 1995: 41-52. |
[1] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[2] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[3] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[4] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[5] | Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves [J]. CIESC Journal, 2022, 73(7): 2952-2961. |
[6] | Cuiping TANG, Yanan ZHANG, Deqing LIANG, Xiang LI. Inhibition effect of chain end modified polyvinyl caprolactam on methane hydrate formation [J]. CIESC Journal, 2022, 73(5): 2130-2139. |
[7] | Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions [J]. CIESC Journal, 2022, 73(11): 4974-4986. |
[8] | Huiyan WANG, Yiqin CHEN, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization [J]. CIESC Journal, 2022, 73(1): 376-383. |
[9] | JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105. |
[10] | Yuanxin FANG, Wu XIAO, Xiaobin JIANG, Xiangcun LI, Gaohong HE, Xuemei WU. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid [J]. CIESC Journal, 2021, 72(9): 4740-4749. |
[11] | Xuming LIANG, Yongchao SHEN, Dong WEI, Qian GUO, Zhi GAO. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics [J]. CIESC Journal, 2021, 72(8): 4361-4370. |
[12] | TANG Cuiping, ZHOU Xuebing, LIANG Deqing. Effect of X-ray diffraction analysis of polyvinylpyrrolidone on decomposition process of hydrate [J]. CIESC Journal, 2021, 72(2): 1125-1131. |
[13] | CHEN Yiqin, XU Yu, ZHOU Jinghong, SUI Zhijun, ZHOU Xinggui. Heterogeneous modeling and internal mass transfer mechanism of lithium-ion batteries: effect of particle size distribution [J]. CIESC Journal, 2021, 72(2): 1078-1088. |
[14] | Huachen QIU, Junhong HAO, Jianxun REN. Influence on performance of thermoelectric cooling devices of thermal conductance distribution between hot and cold ends [J]. CIESC Journal, 2020, 71(S2): 39-45. |
[15] | Jie ZHANG, Liping PANG, Hongquan QU, Tianbo WANG. Multi-condition thermal models of avionics pod using stochastic configuration network [J]. CIESC Journal, 2020, 71(S1): 441-447. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 982
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 654
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||