CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2688-2696.DOI: 10.11949/0438-1157.20201277
• Separation engineering • Previous Articles Next Articles
WANG Ying1(),ZHENG Baishu1(),WANG Liusheng1,WANG Guanyu1,ZENG Wenjiang1,WANG Zhaoxu1,YANG Qingyuan2()
Received:
2020-09-07
Revised:
2020-12-29
Online:
2021-05-05
Published:
2021-05-05
Contact:
ZHENG Baishu,YANG Qingyuan
王莹1(),郑柏树1(),王刘盛1,汪冠宇1,曾文江1,汪朝旭1,阳庆元2()
通讯作者:
郑柏树,阳庆元
作者简介:
王莹(1998—),女,硕士研究生,基金资助:
CLC Number:
WANG Ying, ZHENG Baishu, WANG Liusheng, WANG Guanyu, ZENG Wenjiang, WANG Zhaoxu, YANG Qingyuan. Computational screening study of radioactive gas Rn from zirconium-based metal organic frameworks materials[J]. CIESC Journal, 2021, 72(5): 2688-2696.
王莹, 郑柏树, 王刘盛, 汪冠宇, 曾文江, 汪朝旭, 阳庆元. 锆基金属-有机骨架材料分离放射性气体Rn的计算筛选研究[J]. 化工学报, 2021, 72(5): 2688-2696.
Add to citation manager EndNote|Ris|BibTeX
原子类型 | (ε/kB)/ K | σ/ ? | q/ e |
---|---|---|---|
O_O2 | 49.0 | 3.02 | -0.113 |
COM_O2 | — | — | 0.226 |
N_N2 | 38.298 | 3.306 | -0.405 |
COM_N2 | — | — | 0.810 |
Rn | 300.0 | 4.17 | — |
H | 7.649 | 2.846 | — |
C | 47.859 | 3.473 | — |
N | 38.948 | 3.263 | — |
O | 48.156 | 3.033 | — |
P | 161.024 | 3.697 | — |
S | 173.101 | 3.590 | — |
F | 36.482 | 3.093 | — |
Cl | 142.557 | 3.519 | — |
Br | 186.184 | 3.519 | — |
I | 256.632 | 3.697 | — |
Co | 7.045 | 2.559 | — |
Ni | 7.549 | 2.525 | — |
Cu | 2.516 | 3.114 | — |
Zn | 62.403 | 2.462 | — |
Zr | 34.724 | 2.783 | — |
Fe | 6.542 | 2.594 | — |
Table 1 Potential energy parameters of different fluid molecules and Zr-MOF
原子类型 | (ε/kB)/ K | σ/ ? | q/ e |
---|---|---|---|
O_O2 | 49.0 | 3.02 | -0.113 |
COM_O2 | — | — | 0.226 |
N_N2 | 38.298 | 3.306 | -0.405 |
COM_N2 | — | — | 0.810 |
Rn | 300.0 | 4.17 | — |
H | 7.649 | 2.846 | — |
C | 47.859 | 3.473 | — |
N | 38.948 | 3.263 | — |
O | 48.156 | 3.033 | — |
P | 161.024 | 3.697 | — |
S | 173.101 | 3.590 | — |
F | 36.482 | 3.093 | — |
Cl | 142.557 | 3.519 | — |
Br | 186.184 | 3.519 | — |
I | 256.632 | 3.697 | — |
Co | 7.045 | 2.559 | — |
Ni | 7.549 | 2.525 | — |
Cu | 2.516 | 3.114 | — |
Zn | 62.403 | 2.462 | — |
Zr | 34.724 | 2.783 | — |
Fe | 6.542 | 2.594 | — |
材料 | Rn/O2 | Rn/N2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
NRn/ (mmol/g) | ΔNRn/ (mmol/g) | NRn /(mmol/g) | ΔNRn /(mmol/g) | |||||||
ZrSQU | 1.951 | 0.1153 | 0.962 | 16903.6 | 16261.26 | 1.979 | 0.0838 | 0.952 | 23603.6 | 22470.63 |
ZrSQU (DDEC) | 1.95 | 0.1152 | 0.94 | 16906.8 | 15886.66 | 1.966 | 0.0834 | 0.965 | 23552.2 | 22729.67 |
UiO-66-(COOH)2 | 1.099 | 0.289 | 0.597 | 3797.3 | 2266.99 | 1.081 | 0.2042 | 0.594 | 5287.8 | 3140.95 |
Table 2 Gas adsorption of candidate materials
材料 | Rn/O2 | Rn/N2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
NRn/ (mmol/g) | ΔNRn/ (mmol/g) | NRn /(mmol/g) | ΔNRn /(mmol/g) | |||||||
ZrSQU | 1.951 | 0.1153 | 0.962 | 16903.6 | 16261.26 | 1.979 | 0.0838 | 0.952 | 23603.6 | 22470.63 |
ZrSQU (DDEC) | 1.95 | 0.1152 | 0.94 | 16906.8 | 15886.66 | 1.966 | 0.0834 | 0.965 | 23552.2 | 22729.67 |
UiO-66-(COOH)2 | 1.099 | 0.289 | 0.597 | 3797.3 | 2266.99 | 1.081 | 0.2042 | 0.594 | 5287.8 | 3140.95 |
结构名称 | LCD/ ? | Sacc/ (m2/g) | φ |
---|---|---|---|
ZrSQU | 5.82 | 143.44 | 0.33 |
UiO-66-(COOH)2 | 7.18 | 690.59 | 0.39 |
Table 3 The structural performance parameters of the candidate materials
结构名称 | LCD/ ? | Sacc/ (m2/g) | φ |
---|---|---|---|
ZrSQU | 5.82 | 143.44 | 0.33 |
UiO-66-(COOH)2 | 7.18 | 690.59 | 0.39 |
Fig.3 The centroid distribution diagram (COM) of ZrSQU(a) and UiO-66-(COOH)2 (b) for the adsorption of Rn in Rn/N2 under the condition of 298 K and 1 bar(carbon atoms are showed in yellow, oxygen atoms in red, zirconium atoms in gray, and hydrogen atoms in blue, respectively)
结构名称 | Rn/N2 | Rn/O2 | ||
---|---|---|---|---|
NRn/ (mmol/g) | NRn/ (mmol/g) | |||
UiO-66 | 0.676 | 1850.88 | 0.148 | 499.19 |
UiO-66-F2 | 0.249 | 829.17 | 0.206 | 694.50 |
UiO-66-(NH2)2 | 0.296 | 1339.68 | 0.403 | 1168.33 |
UiO-66-Cl2 | 0.555 | 1715.94 | 0.477 | 1357.43 |
UiO-66-Br2 | 0.518 | 1601.72 | 0.425 | 1400.73 |
UiO-66-(CH3)2 | 0.406 | 2014.44 | 0.581 | 1597.75 |
UiO-66-(OCH3)2 | 0.762 | 2477.02 | 0.665 | 1878.11 |
UiO-66-(CF3)2 | 0.809 | 3583.05 | 0.702 | 2499.25 |
UiO66-(SO3H)2 | 1.719 | 5135.59 | 1.181 | 2962.31 |
UiO-66-(COOH)2 | 1.143 | 5287.77 | 1.099 | 3797.28 |
UiO-66-(NO2)2 | 0.646 | 2163.26 | 0.661 | 1861.25 |
Table 4 The adsorption and separation of UiO-66 series materials to gases
结构名称 | Rn/N2 | Rn/O2 | ||
---|---|---|---|---|
NRn/ (mmol/g) | NRn/ (mmol/g) | |||
UiO-66 | 0.676 | 1850.88 | 0.148 | 499.19 |
UiO-66-F2 | 0.249 | 829.17 | 0.206 | 694.50 |
UiO-66-(NH2)2 | 0.296 | 1339.68 | 0.403 | 1168.33 |
UiO-66-Cl2 | 0.555 | 1715.94 | 0.477 | 1357.43 |
UiO-66-Br2 | 0.518 | 1601.72 | 0.425 | 1400.73 |
UiO-66-(CH3)2 | 0.406 | 2014.44 | 0.581 | 1597.75 |
UiO-66-(OCH3)2 | 0.762 | 2477.02 | 0.665 | 1878.11 |
UiO-66-(CF3)2 | 0.809 | 3583.05 | 0.702 | 2499.25 |
UiO66-(SO3H)2 | 1.719 | 5135.59 | 1.181 | 2962.31 |
UiO-66-(COOH)2 | 1.143 | 5287.77 | 1.099 | 3797.28 |
UiO-66-(NO2)2 | 0.646 | 2163.26 | 0.661 | 1861.25 |
1 | Lubin J H, Boice J D, Edling C, et al. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure[J]. JNCI: Journal of the National Cancer Institute, 1995, 87(11): 817-827. |
2 | Garzillo C, Pugliese M, Loffredo F, et al. Indoor radon exposure and lung cancer risk: a meta-analysis of case-control studies[J]. Translational Cancer Research, 2017, 6(S5): S934-S943. |
3 | Martín Sánchez A, de la Torre Pérez J, Ruano Sánchez A B, et al. Radon in workplaces in Extremadura (Spain)[J]. Journal of Environmental Radioactivity, 2012, 107: 86-91. |
4 | Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
5 | Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
6 | Perry J J, Teich-Mcgoldrick S L, Meek S T, et al. Noble gas adsorption in metal-organic frameworks containing open metal sites[J]. The Journal of Physical Chemistry C, 2014, 118(22): 11685-11698. |
7 | Tang Z L, Chen H J, Zhang Y, et al. Functional two-dimensional coordination polymer exhibiting luminescence detection of nitroaromatics[J]. Crystal Growth & Design, 2019, 19(2): 1172-1182. |
8 | Wang Z X, Zheng B S, Liu H T, et al. A highly porous 4, 4-paddlewheel-connected NbO-type metal-organic framework with a large gas-uptake capacity[J]. Dalton Transactions, 2013, 42(31): 11304-11311. |
9 | Yang Q, Wiersum A D, Llewellyn P L, et al. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration[J]. Chemical Communications, 2011, 47(34): 9603-9605. |
10 | Zhang S W, Chen H J, Tian H J, et al. A 3D supramolecular network constructed from {Ni9} cluster and benzotriazole[J]. Inorganic Chemistry Communications, 2017, 86: 87-89. |
11 | Zheng B S, Lin X, Wang Z X, et al. Enhanced water stability of a microporous acylamide-functionalized metal-organic framework via interpenetration and methyl decoration[J]. CrystEngComm, 2014, 16(41): 9586-9589. |
12 | Zheng B S, Wang H, Wang Z X, et al. A highly porous rht-type acylamide-functionalized metal-organic framework exhibiting large CO2 uptake capabilities[J]. Chemical Communications, 2016, 52(88): 12988-12991. |
13 | Zheng B S, Yun R R, Bai J F, et al. Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption[J]. Inorganic Chemistry, 2013, 52(6): 2823-2829. |
14 | Dincă M, Long J R. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites[J]. Angewandte Chemie (International Edition in English), 2008, 47(36): 6766-6779. |
15 | Liao J X, Zeng W J, Zheng B S, et al. Highly efficient CO2 capture and conversion of a microporous acylamide functionalized rht-type metal-organic framework[J]. Inorganic Chemistry Frontiers, 2020, 7(9): 1939-1948. |
16 | Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129. |
17 | Wang Z X, Luo X, Zheng B S, et al. Highly selective carbon dioxide capture and cooperative catalysis of a water-stable acylamide-functionalized metal-organic framework[J]. European Journal of Inorganic Chemistry, 2018, 2018(11): 1309-1314. |
18 | Wang Z X, Zheng B S, Liu H T, et al. High-capacity gas storage by a microporous oxalamide-functionalized NbO-type metal-organic framework[J]. Crystal Growth & Design, 2013, 13(11): 5001-5006. |
19 | Zhou W. Methane storage in porous metal-organic frameworks: current records and future perspectives[J]. The Chemical Record, 2010, 10(3): 200-204. |
20 | Yun R R, Cui R R, Qian F J, et al. Formation of a metal-organic framework with high gas uptakes based upon amino-decorated polyhedral cages[J]. RSC Advances, 2015, 5(4): 2374-2377. |
21 | 原野, 王明, 周云琪, 等. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450. |
Yuan Y, Wang M, Zhou Y Q, et al. Progress in pore size regulation of metal-organic frameworks[J]. CIESC Journal, 2020, 71(2): 429-450. | |
22 | 阳庆元, 刘大欢, 仲崇立. 金属-有机骨架材料的计算化学研究[J]. 化工学报, 2009, 60(4): 805-819. |
Yang Q Y, Liu D H, Zhong C L. Computational study of metal-organic frameworks[J]. CIESC Journal, 2009, 60(4): 805-819. | |
23 | Zheng B S, Luo X, Wang Z X, et al. An unprecedented water stable acylamide-functionalized metal-organic framework for highly efficient CH4/CO2 gas storage/separation and acid-base cooperative catalytic activity[J]. Inorganic Chemistry Frontiers, 2018, 5(9): 2355-2363. |
24 | 刘宇, 赵双良, 胡军, 等. 气体在金属-有机骨架材料中的吸附分离: 经典密度泛函理论的应用[J]. 化工学报, 2016, 67(1): 89-96. |
Liu Y, Zhao S L, Hu J, et al. Gas adsorption and separation in metal-organic framework: application of classical density functional theory[J]. CIESC Journal, 2016, 67(1): 89-96. | |
25 | Zheng B S, Liu H T, Wang Z X, et al. Porous NbO-type metal-organic framework with inserted acylamide groups exhibiting highly selective CO2 capture[J]. CrystEngComm, 2013, 15(18): 3517. |
26 | 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143. |
Wang L, Fang G Y, Yang Q Y. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening[J]. CIESC Journal, 2019, 70(3): 1135-1143. | |
27 | Zheng B S, Huang L, Cao X Y, et al. A highly porous acylamide decorated MOF-505 analogue exhibiting high and selective CO2 gas uptake capability[J]. CrystEngComm, 2018, 20(13): 1874-1881. |
28 | 张所瀛, 刘红, 刘朋飞, 等. 金属有机骨架材料在CO2/CH4吸附分离中的研究进展[J]. 化工学报, 2014, 65(5): 1563-1570. |
Zhang S Y, Liu H, Liu P F, et al. Progress of adsorption-based CO2/CH4 separation by metal organic frameworks[J]. CIESC Journal, 2014, 65(5): 1563-1570. | |
29 | Yang Q Y, Zhong C L. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks[J]. The Journal of Physical Chemistry B, 2006, 110(36): 17776-17783. |
30 | Wang M, Guo L, Cao D P. Amino-functionalized luminescent metal-organic framework test paper for rapid and selective sensing of SO2 gas and its derivatives by luminescence turn-on effect[J]. Analytical Chemistry, 2018, 90(5): 3608-3614. |
31 | Qiao Z W, Peng C W, Zhou J, et al. High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture[J]. Journal of Materials Chemistry A, 2016, 4(41): 15904-15912. |
32 | Peng X, Cao D P. Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas[J]. AIChE Journal, 2013, 59(8): 2928-2942. |
33 | Zhao X X, Zhang S W, Yan J Q, et al. Polyoxometalate-based metal-organic frameworks as visible-light-induced photocatalysts[J]. Inorganic Chemistry, 2018, 57(9): 5030-5037. |
34 | Xie Y, Ning S G, Zhang Y, et al. A 3D supramolecular network as highly selective and sensitive luminescent sensor for PO43- and Cu2+ ions in aqueous media[J]. Dyes and Pigments, 2018, 150: 36-43. |
35 | Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal-organic frameworks as heterogeneous catalysts[J]. Chemical Communications, 2012, 48(92): 11275-11288. |
36 | Zeng X F, Chen F, Cao D P. Screening metal-organic frameworks for capturing radioactive gas Rn in indoor air[J]. Journal of Hazardous Materials, 2019, 366: 624-629. |
37 | Sumer Z, Keskin S. Molecular simulations of MOF adsorbents and membranes for noble gas separations[J]. Chemical Engineering Science, 2017, 164: 108-121. |
38 | Zhou F X, Zheng B S, Liu D H, et al. Large-scale structural refinement and screening of zirconium metal-organic frameworks for H2S/CH4 separation[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46984-46992. |
39 | Willems T F, Rycroft C H, Kazi M, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous and Mesoporous Materials, 2012, 149(1): 134-141. |
40 | Mellot C, Lignieres J. Monte Carlo simulations of N2 and O2 adsorption in silicalite and CaLSX zeolites[J]. Molecular Simulation, 1997, 18(6): 349-365. |
41 | Makrodimitris K, Papadopoulos G K, Theodorou D N. Prediction of permeation properties of CO2 and N2 through silicalite via molecular simulations[J]. The Journal of Physical Chemistry B, 2001, 105(4): 777-788. |
42 | Pellenq R J M, Nicholson D. Intermolecular potential function for the physical adsorption of rare gases in silicalite[J]. The Journal of Physical Chemistry, 1994, 98(50): 13339-13349. |
43 | Rappé A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035. |
44 | Mayo S L, Olafson B D, Goddard W A. DREIDING: a generic force field for molecular simulations[J]. The Journal of Physical Chemistry, 1990, 94(26): 8897-8909. |
45 | Yang Q Y, Liu D H, Zhong C L, et al. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chemical Reviews, 2013, 113(10): 8261-8323. |
46 | Lan Y S, Han X Y, Tong M M, et al. Materials genomics methods for high-throughput construction of COFs and targeted synthesis [J]. Nature Communications, 2018, 9:5274-5283. |
47 | Breneman C M, Wiberg K B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis[J]. Journal of Computational Chemistry, 1990, 11(3): 361-373. |
48 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. |
49 | Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758. |
50 | Manz T A, Sholl D S. Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials[J]. Journal of Chemical Theory and Computation, 2010, 6(8): 2455-2468. |
51 | 许红, 童敏曼, 吴栋, 等. 金属-有机骨架材料用于去除天然气中H2S的计算研究[J]. 物理化学学报, 2015, 31(1): 41-50. |
Xu H, Tong M M, Wu D, et al. Computational study of metal-organic frameworks for removing H2S from natural gas[J]. Acta Physico-Chimica Sinica, 2015, 31(1): 41-50. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[10] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[11] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[12] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[13] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[14] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[15] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||