1 |
Rose J W. Dropwise condensation theory and experiment: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 115-128.
|
2 |
Ma X H, Rose J W, Xu D Q, et al. Advances in dropwise condensation heat transfer: Chinese research[J]. Chemical Engineering Journal, 2000, 78(2/3): 87-93.
|
3 |
Egab K, Alwazzan M, Peng B L, et al. Enhancing filmwise and dropwise condensation using a hybrid wettability contrast mechanism: circular patterns[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119640.
|
4 |
Xie J, Xu J L, Li X, et al. Dropwise condensation on superhydrophobic nanostructure surface(Ⅰ): Long-term operation and nanostructure failure[J]. International Journal of Heat and Mass Transfer, 2019, 129: 86-95.
|
5 |
Zarei S, Talesh Bahrami H R, Saffari H. Effects of geometry and dimension of micro/nano-structures on the heat transfer in dropwise condensation: a theoretical study[J]. Applied Thermal Engineering, 2018, 137: 440-450.
|
6 |
Seo D, Oh S, Shin S, et al. Dynamic heat transfer analysis of condensed droplets growing and coalescing on water repellent surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 114: 934-943.
|
7 |
Feng J, Qin Z Q, Yao S H. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces[J]. Langmuir, 2012, 28(14): 6067-6075.
|
8 |
Dietz C, Rykaczewski K, Fedorov A G, et al. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation[J]. Applied Physics Letters, 2010, 97(3): 033104.
|
9 |
Ma X H, Zhou X D, Lan Z, et al. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2008, 51(7/8): 1728-1737.
|
10 |
ElSherbini A I, Jacobi A M. Liquid drops on vertical and inclined surfaces(Ⅰ): An experimental study of drop geometry[J]. Journal of Colloid and Interface Science, 2004, 273(2): 556-565.
|
11 |
Finkelstein Y, Tamir A. Interfacial heat transfer coefficients of various vapors in direct contact condensation[J]. The Chemical Engineering Journal, 1976, 12(3): 199-209.
|
12 |
Eimann F, Zheng S F, Philipp C, et al. Dropwise condensation of humid air—experimental investigation and modelling of the convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119734.
|
13 |
Eimann F, Zheng S F, Philipp C, et al. Convective dropwise condensation out of humid air inside a horizontal channel — experimental investigation of the condensate heat transfer resistance[J]. International Journal of Heat and Mass Transfer, 2018, 127: 448-464.
|
14 |
周兴东, 马学虎, 兰忠, 等. 滴状冷凝强化含不凝气的蒸气冷凝传热机制[J]. 化工学报, 2007, 58(7): 1619-1625.
|
|
Zhou X D, Ma X H, Lan Z, et al. Mechanism of dropwise condensation heat transfer enhancement in presence of non-condensable gas[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1619-1625.
|
15 |
Jiang J, Liu F, Zhang X F, et al. Model development and simulation on dropwise condensation by coupling absorption theory in the presence of non-condensable gas (NCG)[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104936.
|
16 |
Baghel V, Sikarwar B S, Muralidhar K. Dropwise condensation from moist air over a hydrophobic metallic substrate[J]. Applied Thermal Engineering, 2020, 181: 115733.
|
17 |
Jung Y C, Bhushan B. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces[J]. Journal of Microscopy, 2008, 229(1): 127-140.
|
18 |
Varanasi K K, Hsu M, Bhate N, et al. Spatial control in the heterogeneous nucleation of water[J]. Applied Physics Letters, 2009, 95(9): 094101.
|
19 |
Zhao Y J, Preston D J, Lu Z M, et al. Effects of millimetric geometric features on dropwise condensation under different vapor conditions[J]. International Journal of Heat and Mass Transfer, 2018, 119: 931-938.
|
20 |
Qi B J, Wei J J, Zhang L, et al. A fractal dropwise condensation heat transfer model including the effects of contact angle and drop size distribution[J]. International Journal of Heat and Mass Transfer, 2015, 83: 259-272.
|
21 |
Koch G, Kraft K, Leipertz A. Parameter study on the performance of dropwise condensation[J]. Revue Générale de Thermique, 1998, 37(7): 539-548.
|
22 |
齐宝金, 张莉, 徐宏, 等. 引入接触角的滴状冷凝分形传热功当量模型[J]. 高校化学工程学报, 2011, 25(5): 751-758.
|
|
Qi B J, Zhang L, Xu H, et al. Contact angle affected fractal model of dropwise condensation heat transfer[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5): 751-758.
|
23 |
周兴东. 导热功能表面强化混合蒸气冷凝传热机理的研究[D]. 大连: 大连理工大学, 2007.
|
|
Zhou X D. Enhancement mechanism of condensation heat transfer for steam-air mixtures using the good conductivity functional surface[D]. Dalian: Dalian University of Technology, 2007.
|
24 |
Lee S, Yoon H K, Kim K J, et al. A dropwise condensation model using a nano-scale, pin structured surface[J]. International Journal of Heat and Mass Transfer, 2013, 60: 664-671.
|
25 |
Chen X, Derby M M. Droplet departure modeling and a heat transfer correlation for dropwise flow condensation in hydrophobic mini-channels[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1096-1104.
|
26 |
Graham C, Griffith P. Drop size distributions and heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 337-346.
|
27 |
Abu-Orabi M. Modeling of heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1998, 41(1): 81-87.
|
28 |
Vemuri S, Kim K J. An experimental and theoretical study on the concept of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4): 649-657.
|
29 |
Marek R, Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 39-53.
|
30 |
Zheng S F, Eimann F, Philipp C, et al. Experimental and modeling investigations of dropwise condensation out of convective humid air flow[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119349.
|
31 |
Zheng S F, Eimann F, Philipp C, et al. Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation[J]. International Journal of Heat and Mass Transfer, 2018, 120: 879-894.
|
32 |
Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8): 081502.
|
33 |
Yamali C, Merte Jr H. A theory of dropwise condensation at large subcooling including the effect of the sweeping[J]. Heat and Mass Transfer, 2002, 38(3): 191-202.
|
34 |
穆春丰. 表面特征对滴状冷凝初始液滴的形成及传热影响的研究[D]. 大连: 大连理工大学, 2008.
|
|
Mu C F. Effect of surface characteristics of material on initial droplet formation and heat transfer of dropwise condensation[D]. Dalian: Dalian University of Technology, 2008.
|
35 |
Maa J R. Drop size distribution and heat flux of dropwise condensation[J]. The Chemical Engineering Journal, 1978, 16(3): 171-176.
|
36 |
Kim K, Lee Y, Jeong J H. Dropwise condensation induced on chromium ion implanted aluminum surface[J]. Nuclear Engineering and Technology, 2019, 51(1): 84-94.
|
37 |
王四芳. 超疏水表面混合蒸气滴状冷凝液滴行为与传热[D]. 大连: 大连理工大学, 2012.
|
|
Wang S F. Wetting evolution and heat transfer characteristics in dropwise condensation of steam-air mixture on superhydrophobic surface[D]. Dalian: Dalian University of Technology, 2012.
|