CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2570-2577.DOI: 10.11949/0438-1157.20201380
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
HE Zhengyu(),PENG Benli(
),SU Fengmin,JI Yulong,MA Hongbin
Received:
2020-09-28
Revised:
2020-12-20
Online:
2021-05-05
Published:
2021-05-05
Contact:
PENG Benli
通讯作者:
彭本利
作者简介:
贺征宇(1996—),男,硕士研究生,基金资助:
CLC Number:
HE Zhengyu, PENG Benli, SU Fengmin, JI Yulong, MA Hongbin. Theoretical analysis on the effect of micro-nano structured superhydrophobic surface parameters on dropwise condensation with non-condensable gas[J]. CIESC Journal, 2021, 72(5): 2570-2577.
贺征宇, 彭本利, 苏风民, 纪玉龙, 马鸿斌. 微纳结构超疏水表面参数影响含不凝气蒸汽冷凝传热的理论分析[J]. 化工学报, 2021, 72(5): 2570-2577.
1 | Rose J W. Dropwise condensation theory and experiment: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 115-128. |
2 | Ma X H, Rose J W, Xu D Q, et al. Advances in dropwise condensation heat transfer: Chinese research[J]. Chemical Engineering Journal, 2000, 78(2/3): 87-93. |
3 | Egab K, Alwazzan M, Peng B L, et al. Enhancing filmwise and dropwise condensation using a hybrid wettability contrast mechanism: circular patterns[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119640. |
4 | Xie J, Xu J L, Li X, et al. Dropwise condensation on superhydrophobic nanostructure surface(Ⅰ): Long-term operation and nanostructure failure[J]. International Journal of Heat and Mass Transfer, 2019, 129: 86-95. |
5 | Zarei S, Talesh Bahrami H R, Saffari H. Effects of geometry and dimension of micro/nano-structures on the heat transfer in dropwise condensation: a theoretical study[J]. Applied Thermal Engineering, 2018, 137: 440-450. |
6 | Seo D, Oh S, Shin S, et al. Dynamic heat transfer analysis of condensed droplets growing and coalescing on water repellent surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 114: 934-943. |
7 | Feng J, Qin Z Q, Yao S H. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces[J]. Langmuir, 2012, 28(14): 6067-6075. |
8 | Dietz C, Rykaczewski K, Fedorov A G, et al. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation[J]. Applied Physics Letters, 2010, 97(3): 033104. |
9 | Ma X H, Zhou X D, Lan Z, et al. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2008, 51(7/8): 1728-1737. |
10 | ElSherbini A I, Jacobi A M. Liquid drops on vertical and inclined surfaces(Ⅰ): An experimental study of drop geometry[J]. Journal of Colloid and Interface Science, 2004, 273(2): 556-565. |
11 | Finkelstein Y, Tamir A. Interfacial heat transfer coefficients of various vapors in direct contact condensation[J]. The Chemical Engineering Journal, 1976, 12(3): 199-209. |
12 | Eimann F, Zheng S F, Philipp C, et al. Dropwise condensation of humid air—experimental investigation and modelling of the convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119734. |
13 | Eimann F, Zheng S F, Philipp C, et al. Convective dropwise condensation out of humid air inside a horizontal channel — experimental investigation of the condensate heat transfer resistance[J]. International Journal of Heat and Mass Transfer, 2018, 127: 448-464. |
14 | 周兴东, 马学虎, 兰忠, 等. 滴状冷凝强化含不凝气的蒸气冷凝传热机制[J]. 化工学报, 2007, 58(7): 1619-1625. |
Zhou X D, Ma X H, Lan Z, et al. Mechanism of dropwise condensation heat transfer enhancement in presence of non-condensable gas[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1619-1625. | |
15 | Jiang J, Liu F, Zhang X F, et al. Model development and simulation on dropwise condensation by coupling absorption theory in the presence of non-condensable gas (NCG)[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104936. |
16 | Baghel V, Sikarwar B S, Muralidhar K. Dropwise condensation from moist air over a hydrophobic metallic substrate[J]. Applied Thermal Engineering, 2020, 181: 115733. |
17 | Jung Y C, Bhushan B. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces[J]. Journal of Microscopy, 2008, 229(1): 127-140. |
18 | Varanasi K K, Hsu M, Bhate N, et al. Spatial control in the heterogeneous nucleation of water[J]. Applied Physics Letters, 2009, 95(9): 094101. |
19 | Zhao Y J, Preston D J, Lu Z M, et al. Effects of millimetric geometric features on dropwise condensation under different vapor conditions[J]. International Journal of Heat and Mass Transfer, 2018, 119: 931-938. |
20 | Qi B J, Wei J J, Zhang L, et al. A fractal dropwise condensation heat transfer model including the effects of contact angle and drop size distribution[J]. International Journal of Heat and Mass Transfer, 2015, 83: 259-272. |
21 | Koch G, Kraft K, Leipertz A. Parameter study on the performance of dropwise condensation[J]. Revue Générale de Thermique, 1998, 37(7): 539-548. |
22 | 齐宝金, 张莉, 徐宏, 等. 引入接触角的滴状冷凝分形传热功当量模型[J]. 高校化学工程学报, 2011, 25(5): 751-758. |
Qi B J, Zhang L, Xu H, et al. Contact angle affected fractal model of dropwise condensation heat transfer[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5): 751-758. | |
23 | 周兴东. 导热功能表面强化混合蒸气冷凝传热机理的研究[D]. 大连: 大连理工大学, 2007. |
Zhou X D. Enhancement mechanism of condensation heat transfer for steam-air mixtures using the good conductivity functional surface[D]. Dalian: Dalian University of Technology, 2007. | |
24 | Lee S, Yoon H K, Kim K J, et al. A dropwise condensation model using a nano-scale, pin structured surface[J]. International Journal of Heat and Mass Transfer, 2013, 60: 664-671. |
25 | Chen X, Derby M M. Droplet departure modeling and a heat transfer correlation for dropwise flow condensation in hydrophobic mini-channels[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1096-1104. |
26 | Graham C, Griffith P. Drop size distributions and heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 337-346. |
27 | Abu-Orabi M. Modeling of heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1998, 41(1): 81-87. |
28 | Vemuri S, Kim K J. An experimental and theoretical study on the concept of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4): 649-657. |
29 | Marek R, Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 39-53. |
30 | Zheng S F, Eimann F, Philipp C, et al. Experimental and modeling investigations of dropwise condensation out of convective humid air flow[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119349. |
31 | Zheng S F, Eimann F, Philipp C, et al. Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation[J]. International Journal of Heat and Mass Transfer, 2018, 120: 879-894. |
32 | Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8): 081502. |
33 | Yamali C, Merte Jr H. A theory of dropwise condensation at large subcooling including the effect of the sweeping[J]. Heat and Mass Transfer, 2002, 38(3): 191-202. |
34 | 穆春丰. 表面特征对滴状冷凝初始液滴的形成及传热影响的研究[D]. 大连: 大连理工大学, 2008. |
Mu C F. Effect of surface characteristics of material on initial droplet formation and heat transfer of dropwise condensation[D]. Dalian: Dalian University of Technology, 2008. | |
35 | Maa J R. Drop size distribution and heat flux of dropwise condensation[J]. The Chemical Engineering Journal, 1978, 16(3): 171-176. |
36 | Kim K, Lee Y, Jeong J H. Dropwise condensation induced on chromium ion implanted aluminum surface[J]. Nuclear Engineering and Technology, 2019, 51(1): 84-94. |
37 | 王四芳. 超疏水表面混合蒸气滴状冷凝液滴行为与传热[D]. 大连: 大连理工大学, 2012. |
Wang S F. Wetting evolution and heat transfer characteristics in dropwise condensation of steam-air mixture on superhydrophobic surface[D]. Dalian: Dalian University of Technology, 2012. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 483
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||