CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3511-3523.DOI: 10.11949/0438-1157.20210145
• Reviews and monographs • Previous Articles Next Articles
CUI Jin1(),SHI Chuan1(),ZHAO Jinbao2()
Received:
2021-01-21
Revised:
2021-03-03
Online:
2021-07-05
Published:
2021-07-05
Contact:
SHI Chuan,ZHAO Jinbao
通讯作者:
石川,赵金保
作者简介:
崔锦(1996—),女,硕士研究生,基金资助:
CLC Number:
CUI Jin,SHI Chuan,ZHAO Jinbao. Research progress on the effect of mechanical pressure on the performance of lithium batteries[J]. CIESC Journal, 2021, 72(7): 3511-3523.
崔锦,石川,赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523.
Add to citation manager EndNote|Ris|BibTeX
Fig.3 Variation of bulk and interfacial impedance with stack pressure of a typical Li/PEO-LiTFSI/Li cell during cycling at 0.1 mA·cm-2 at 60℃ (a), 80℃ (b) and 100℃ (c) [43]
Fig.5 Schematic diagram of the constraint fixture used to maintain and measure compressive stack stress (a); Stack stress evolution as a function of cycle number. Changes in the initial stack pressure have a profound effect on the nature of the subsequent stress evolution in the cell (b)[53]
Fig.6 Electrochemical performance and CE of solid-state nano-Si composite anodes cycled at a rate of C/20 under compressive pressures of 3, 150 and 230 MPa (a); Specific charge (delithiation) capacity retention as a percentage of initial specific capacity (b) [58]
Fig.9 The potential response to a constant current density at varying stack pressures(a); Comparison of the pressure-induced strain rate and the current-induced strain rate for cycling at 0.1 mA·cm-2 (b) [84]
1 | 陈立泉. 锂离子电池正极材料的研究进展[J]. 电池, 2002, 32(S1): 6-8. |
Chen L Q. Research progress in cathode materials of Li-ion battery[J]. Battery Bimonthly, 2002, 32(S1): 6-8. | |
2 | Fergus J W. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(4): 939-954. |
3 | 崔清伟, 李建军, 戴仲葭, 等. 锂离子电池硅基负极材料研究进展[J]. 化工新型材料, 2013, 41(6): 18-20. |
Cui Q W, Li J J, Dai Z J, et al. Progress in silicon-based cathode materials for lithium-ionic battery[J]. New Chemical Materials, 2013, 41(6): 18-20. | |
4 | 林克芝, 王晓琳, 徐艳辉. 锂离子电池锡基负极材料的改性研究进展[J]. 电源技术, 2005, 29(1): 62-65. |
Lin K Z, Wang X L, Xu Y H. Recent development of tin-based materials as anode of the lithium ion battery[J]. Chinese Journal of Power Sources, 2005, 29(1): 62-65. | |
5 | Arora P, Zhang Z J. Battery separators[J]. Chemical Reviews, 2004, 104(10): 4419-4462. |
6 | Shi C, Dai J H, Huang S H, et al. A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries[J]. Journal of Membrane Science, 2016, 518: 168-177. |
7 | Dai J H, Shi C, Li C, et al. A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes[J]. Energy & Environmental Science, 2016, 9(10): 3252-3261. |
8 | Lin X R, Salari M, Arava L M R, et al. High temperature electrical energy storage: advances, challenges, and frontiers[J]. Chemical Society Reviews, 2016, 45(21): 5848-5887. |
9 | Jaumaux P, Wu J R, Shanmukaraj D, et al. Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries[J]. Advanced Functional Materials, 2021, 31(10): 2008644. |
10 | Shi C, Zhang P, Chen L X, et al. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries[J]. Journal of Power Sources, 2014, 270: 547-553. |
11 | 南皓雄, 赵辰孜, 袁洪, 等. 固态金属锂电池研究进展:外部压力和内部应力的影响[J]. 化工学报, 2021, 72(1): 61-70. |
Nan H X, Zhao C Z, Yuan H, et al. Recent advances in solid-state lithium metal batteries: the role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70. | |
12 | Bucci G, Swamy T, Bishop S, et al. The effect of stress on battery-electrode capacity[J]. Journal of the Electrochemical Society, 2017, 164(4): A645-A654. |
13 | Kumar R, Tokranov A, Sheldon B W, et al. In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes[J]. ACS Energy Letters, 2016, 1(4): 689-697. |
14 | Wang C, Wu H, Chen Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature Chemistry, 2013, 5(12): 1042-1048. |
15 | Jia H P, Gao P F, Yang J, et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material[J]. Advanced Energy Materials, 2011, 1(6): 1036-1039. |
16 | Shi C, Zhu J W, Shen X, et al. Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery[J]. RSC Advances, 2018, 8(8): 4072-4077. |
17 | Li N W, Shi Y, Yin Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509. |
18 | Shi C, Dai J H, Shen X, et al. A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries[J]. Journal of Membrane Science, 2016, 517: 91-99. |
19 | 王振华, 彭代冲, 孙克宁. 锂离子电池隔膜材料研究进展[J]. 化工学报, 2018, 69(1): 282-294. |
Wang Z H, Peng D C, Sun K N. Research progress of separator materials for lithium ion batteries[J]. CIESC Journal, 2018, 69(1): 282-294. | |
20 | Dawson M A, Germaine J T, Gibson L J. Permeability of open-cell foams under compressive strain[J]. International Journal of Solids and Structures, 2007, 44(16): 5133-5145. |
21 | Gioia G, Wang Y, Cuitiño A M. The energetics of heterogeneous deformation in open-cell solid foams[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 457(2009): 1079-1096. |
22 | Sarkar A, Shrotriya P, Chandra A. Modeling of separator failure in lithium-ion pouch cells under compression[J]. Journal of Power Sources, 2019, 435: 226756. |
23 | Peabody C, Arnold C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153. |
24 | Zhang X W, Sahraei E, Wang K. Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327: 693-701. |
25 | Cui J, Chen X, Zhou Z, et al. Effect of continuous pressures on electrochemical performance of Si anodes[J]. Materials Today Energy, 2021, 20: 100632. |
26 | Shi D H, Xiao X R, Huang X S, et al. Modeling stresses in the separator of a pouch lithium-ion cell[J]. Journal of Power Sources, 2011, 196(19): 8129-8139. |
27 | Xiao X R, Wu W, Huang X S. A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery[J]. Journal of Power Sources, 2010, 195(22): 7649-7660. |
28 | Wang Y, Richards W D, Ong S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031. |
29 | Zhao N, Khokhar W, Bi Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190-1199. |
30 | Inaguma Y, Chen L Q, Itoh M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10): 689-693. |
31 | Zheng F, Kotobuki M, Song S F, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213. |
32 | Huang W L, Zhao N, Bi Z J, et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes?[J]. Materials Today Nano, 2020, 10: 100075. |
33 | Li R G, Guo S T, Yu L, et al. Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes[J]. Advanced Materials Interfaces, 2019, 6(10): 1900200. |
34 | Li Y T, Han J T, Wang C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357-15361. |
35 | Hartley G O, Jin L Y, Bergner B J, et al. Is nitrogen present in Li3N·P2S5 solid electrolytes produced by ball milling?[J]. Chemistry of Materials, 2019, 31(24): 9993-10001. |
36 | Shi K, Wan Z P, Yang L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(29): 11784-11788. |
37 | Jian Z L, Hu Y S, Ji X L, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): 1601925. |
38 | Chen R J, Qu W J, Guo X, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons[J]. Materials Horizons, 2016, 3(6): 487-516. |
39 | Long L Z, Wang S J, Xiao M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. |
40 | Shen X, Hua H M, Li H, et al. Synthesis and molecular dynamic simulation of a novel single ion conducting gel polymer electrolyte for lithium-ion batteries[J]. Polymer, 2020, 201: 122568. |
41 | Siska D P, Shriver D F. Li+ conductivity of polysiloxane–trifluoromethylsulfonamide polyelectrolytes[J]. Chemistry of Materials, 2001, 13(12): 4698-4700. |
42 | Zhu Y S, Wang X J, Hou Y Y, et al. A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries[J]. Electrochimica Acta, 2013, 87: 113-118. |
43 | Gupta A, Kazyak E, Craig N, et al. Evaluating the effects of temperature and pressure on Li/PEO-LiTFSI interfacial stability and kinetics[J]. Journal of the Electrochemical Society, 2018, 165(11): A2801-A2806. |
44 | Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Sci. Rep., 2013, 3: 2261. |
45 | Doux J M, Yang Y, Tan D H S, et al. Pressure effects on sulfide electrolytes for all solid-state batteries[J]. Journal of Materials Chemistry A, 2020, 8(10): 5049-5055. |
46 | 黄晓, 吴林斌, 黄祯, 等. 锂离子固体电解质研究中的电化学测试方法[J]. 储能科学与技术, 2020, 9(2): 479-500. |
Huang X, Wu L B, Huang Z, et al. Characterization and testing of key electrical and electrochemical properties of lithium-ion solid electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 479-500. | |
47 | Yu S, Schmidt R D, Garcia-Mendez R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2016, 28(1): 197-206. |
48 | Krauskopf T, Hartmann H, Zeier W G, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14463-14477. |
49 | Qi Y, Ban C M, Harris S J. A new general paradigm for understanding and preventing Li metal penetration through solid electrolytes[J]. Joule, 2020, 4(12): 2599-2608. |
50 | Cho J, Kim Y J, Kim T J, et al. Zero-strain intercalation cathode for rechargeable Li-ion cell[J]. Angewandte Chemie International Edition, 2001, 40(18): 3367-3369. |
51 | Xiao Y, Wang G X, Zhou S, et al. Enhanced electrochemical performance and decreased strain of graphite anode by Li2SiO3 and Li2CO3 co-modifying[J]. Electrochimica Acta, 2017, 223: 8-20. |
52 | Schweidler S, Biasi L D, Schiele A, et al. Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study[J]. The Journal of Physical Chemistry C, 2018, 122(16): 8829-8835. |
53 | Cannarella J, Arnold C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of Power Sources, 2014, 245: 745-751. |
54 | Nadimpalli S P V, Sethuraman V A, Abraham D P, et al. Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing[J]. Journal of the Electrochemical Society, 2015, 162(14): A2656-A2663. |
55 | Beaulieu L Y, Eberman K W, Turner R L, et al. Colossal reversible volume changes in lithium alloys[J]. Electrochemical and Solid-State Letters, 2001, 4(9): A137. |
56 | Louli A J, Li J, Trussler S, et al. Volume, pressure and thickness evolution of Li-ion pouch cells with silicon-composite negative electrodes[J]. Journal of the Electrochemical Society, 2017, 164(12): A2689-A2696. |
57 | Louli A J, Ellis L D, Dahn J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 2019, 3(3): 745-761. |
58 | Piper D M, Yersak T A, Lee S H. Effect of compressive stress on electrochemical performance of silicon anodes[J]. Journal of the Electrochemical Society, 2012, 160(1): A77-A81. |
59 | 段惠, 殷雅侠, 郭玉国, 等. 固态金属锂电池最新进展评述[J]. 储能科学与技术, 2017, 6(5): 941-951. |
Duan H, Yin Y X, Guo Y G, et al. Research progress on solid-state lithium metal batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. | |
60 | 高鹏, 韩家军, 朱永明, 等. 金属锂二次电池锂负极改性[J]. 化学进展, 2009, 21(Z2): 1678-1686. |
Gao P, Han J J, Zhu Y M, et al. Surface treatment on lithium electrode in rechargeable lithium metal batteries[J]. Progress in Chemistry, 2009, 21(Z2): 1678-1686. | |
61 | Wen Z P, Lin Y X, Peng Y Y, et al. Exploring the impact of key assembling parameters on the electrochemical performance of lithium metal symmetry cell[J]. Journal of the Electrochemical Society, 2020, 167(2): 020532. |
62 | Tang Y F, Zhang L Q, Chen J Z, et al. Electro-chemo-mechanics of lithium in solid state lithium metal batteries[J]. Energy & Environmental Science, 2021, 14(2): 602-642. |
63 | Chen Y, Wang Z, Li X, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255. |
64 | Liu S, Deng L J, Guo W Q, et al. Bulk nanostructured materials design for fracture-resistant lithium metal anodes[J]. Advanced Materials, 2019, 31(15): 1807585. |
65 | Ye H, Xin S, Yin Y X, et al. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons[J]. Journal of the American Chemical Society, 2017, 139(16): 5916-5922. |
66 | Gao X J, Yang X F, Adair K, et al. Fast charging all solid-state lithium batteries enabled by rational design of dual vertically-aligned electrodes[J]. Advanced Functional Materials, 2020, 30(50): 2005357. |
67 | Deng K R, Han D M, Ren S, et al. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2019, 7(21): 13113-13119. |
68 | Wen Z P, Peng Y Y, Cong J L, et al. A stable artificial protective layer for high capacity dendrite-free lithium metal anode[J]. Nano Research, 2019, 12(10): 2535-2542. |
69 | Wen Z P, Wu D Z, Li H, et al. Ag-modified hydrogen titanate nanowire arrays for stable lithium metal anode in a carbonate-based electrolyte[J]. Journal of Energy Chemistry, 2021, 54: 282-290. |
70 | Sun Y P, Amirmaleki M, Zhao Y, et al. Tailoring the mechanical and electrochemical properties of an artificial interphase for high-performance metallic lithium anode[J]. Advanced Energy Materials, 2020, 10(28): 2001139. |
71 | Zhao C Z, Chen P Y, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Sci. Adv., 2018, 4(11): eaat3446. |
72 | Li C F, Liu S H, Shi C G, et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes[J]. Nature Communications, 2019, 10: 1363. |
73 | Chang H J, Trease N M, Ilott A J, et al. Investigating Li microstructure formation on Li anodes for lithium batteries by in situ6Li/7Li NMR and SEM[J]. The Journal of Physical Chemistry C, 2015, 119(29): 16443-16451. |
74 | Gireaud L, Grugeon S, Laruelle S, et al. Lithium metal stripping/plating mechanisms studies: a metallurgical approach[J]. Electrochemistry Communications, 2006, 8(10): 1639-1649. |
75 | Wilkinson D P, Blom H, Brandt K, et al. Effects of physical constraints on Li cyclability[J]. Journal of Power Sources, 1991, 36(4): 517-527. |
76 | Yin X S, Tang W, Jung I D, et al. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure[J]. Nano Energy, 2018, 50: 659-664. |
77 | Zhao Y, Stein P, Bai Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries[J]. Journal of Power Sources, 2019, 413: 259-283. |
78 | Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics[J]. Journal of the Electrochemical Society, 2004, 151(6): A880. |
79 | Shen X, Zhang R, Shi P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
80 | Niu C J, Lee H, Chen S R, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551-559. |
81 | Lin L D, Wang J X, Li R, et al. Synergistic effect of interface layer and mechanical pressure for advanced Li metal anodes[J]. Energy Storage Materials, 2020, 26: 112-118. |
82 | Barai P, Higa K, Srinivasan V. Impact of external pressure and electrolyte transport properties on lithium dendrite growth[J]. Journal of the Electrochemical Society, 2018, 165(11): A2654-A2666. |
83 | Koshikawa H, Matsuda S, Kamiya K, et al. Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles[J]. Journal of Power Sources, 2018, 376: 147-151. |
84 | Wang M J, Choudhury R, Sakamoto J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density[J]. Joule, 2019, 3(9): 2165-2178. |
85 | Doux J M, Nguyen H, Tan D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[6] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[9] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[10] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[11] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[12] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[13] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[14] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[15] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||