CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3488-3510.DOI: 10.11949/0438-1157.20210269
• Reviews and monographs • Previous Articles Next Articles
WANG Shaoyu1,2(),MA Hanze1,2(),WU Hong1,2,LIANG Xu1,2,WANG Hongjian1,2,ZHU Ziting1,2,JIANG Zhongyi1,2,3()
Received:
2021-02-19
Revised:
2021-04-25
Online:
2021-07-05
Published:
2021-07-05
Contact:
JIANG Zhongyi
王绍宇1,2(),马翰泽1,2(),吴洪1,2,梁旭1,2,王洪建1,2,朱姿亭1,2,姜忠义1,2,3()
通讯作者:
姜忠义
作者简介:
王绍宇(1998—),男,硕士研究生,基金资助:
CLC Number:
WANG Shaoyu, MA Hanze, WU Hong, LIANG Xu, WANG Hongjian, ZHU Ziting, JIANG Zhongyi. Research advances of organic framework membranes in gas separation[J]. CIESC Journal, 2021, 72(7): 3488-3510.
王绍宇, 马翰泽, 吴洪, 梁旭, 王洪建, 朱姿亭, 姜忠义. 有机框架膜在气体分离中的研究进展[J]. 化工学报, 2021, 72(7): 3488-3510.
Add to citation manager EndNote|Ris|BibTeX
1 | Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663. |
2 | Bernardo G, Araújo T, da Silva Lopes T, et al. Recent advances in membrane technologies for hydrogen purification[J]. International Journal of Hydrogen Energy, 2020, 45(12): 7313-7338. |
3 | Chuah C, Goh K, Yang Y Q, et al. Harnessing filler materials for enhancing biogas separation membranes[J]. Chemical Reviews, 2018, 118(18): 8655-8769. |
4 | Wang S, Li X, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
5 | Ren Y X, Liang X, Dou H Z, et al. Membrane-based olefin/paraffin separations[J]. Advanced Science, 2020, 7(19): 2001398. |
6 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
7 | Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380. |
8 | Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
9 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
10 | Liu Y Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous and Mesoporous Materials, 2009, 118(1/2/3): 296-301. |
11 | Huang A S, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564. |
12 | Zhang F, Zou X Q, Gao X, et al. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability[J]. Advanced Functional Materials, 2012, 22(17): 3583-3590. |
63 | Jiang J X, Su F B, Trewin A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angewandte Chemie International Edition, 2008, 47(7): 1167. |
64 | Jiang J X, Trewin A, Adams D J, et al. Band gap engineering in fluorescent conjugated microporous polymers[J]. Chemical Science, 2011, 2(9): 1777-1781. |
65 | Lee J S M, Cooper A I. Advances in conjugated microporous polymers[J]. Chemical Reviews, 2020, 120(4): 2171-2214. |
66 | Liu Q Q, Tang Z, Wu M D, et al. Design, preparation and application of conjugated microporous polymers[J]. Polymer International, 2014, 63(3): 381-392. |
67 | Sun C J, Zhao X Q, Wang P F, et al. Thiophene-based conjugated microporous polymers: synthesis, characterization and efficient gas storage[J]. Science China Chemistry, 2017, 60(8): 1067-1074. |
68 | Xu Y F, Zhang C, Mu P, et al. Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution[J]. Science China Chemistry, 2017, 60(8): 1075-1083. |
69 | Tan Z Q, Su H M, Guo Y W, et al. Ferrocene-based conjugated microporous polymers derived from Yamamoto coupling for gas storage and dye removal[J]. Polymers, 2020, 12(3): 719. |
70 | Sheng X, Shi H, Yang L M, et al. Rationally designed conjugated microporous polymers for contaminants adsorption[J]. Science of the Total Environment, 2021, 750: 141683. |
71 | Baig N, Shetty S, Al-Mousawi S, et al. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption[J]. Polymer Chemistry, 2021, 12(15): 2282-2292. |
72 | Luo S H, Zeng Z T, Zeng G M, et al. Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects[J]. Journal of Materials Chemistry A, 2020, 8(14): 6434-6470. |
73 | Xu H, Li X, Hao H M, et al. Designing fluorene-based conjugated microporous polymers for blue light-driven photocatalytic selective oxidation of amines with oxygen[J]. Applied Catalysis B: Environmental, 2021, 285: 119796. |
74 | Wang M K, Wang S, Song X W, et al. Photo-responsive oxidase mimic of conjugated microporous polymer for constructing a pH-sensitive fluorescent sensor for bio-enzyme sensing[J]. Sensors and Actuators B: Chemical, 2020, 316: 128157. |
75 | Yan C N, Meng N, Lyu W, et al. Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage[J]. Carbon, 2021, 176: 178-187. |
76 | Cheng G, Hasell T, Trewin A, et al. Soluble conjugated microporous polymers[J]. Angewandte Chemie International Edition, 2012, 51(51): 12727-12731. |
77 | Huang B L, Zhao P, Dai Y N, et al. Size-controlled synthesis of soluble-conjugated microporous polymer nanoparticles through sonogashira polycondensation in confined nanoreactors[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54(15): 2285-2290. |
78 | Tozawa T, Jones J T, Swamy S I, et al. Porous organic cages[J]. Nature Materials, 2009, 8(12): 973-978. |
79 | Yuan Y D, Dong J, Liu J, et al. Porous organic cages as synthetic water channels[J]. Nature Communications, 2020, 11(1): 4927. |
13 | Fan H W, Mundstock A, Gu J H, et al. An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation[J]. Journal of Materials Chemistry A, 2018, 6(35): 16849-16853. |
14 | Ying Y P, Tong M M, Ning S C, et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation[J]. Journal of the American Chemical Society, 2020, 142(9): 4472-4480. |
15 | Fan H W, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32): 10094-10098. |
16 | Wang L, Jia J T, Faheem M, et al. Fabrication of triazine-based porous aromatic framework (PAF) membrane with structural flexibility for gas mixtures separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 373-379. |
17 | Lindemann P, Tsotsalas M, Shishatskiy S, et al. Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation[J]. Chemistry of Materials, 2014, 26(24): 7189-7193. |
18 | Song Q L, Jiang S, Hasell T, et al. Porous organic cage thin films and molecular-sieving membranes[J]. Advanced Materials, 2016, 28(13): 2629-2637. |
19 | Feng S, Shang Y X, Wang Z K, et al. Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation[J]. Angewandte Chemie International Edition, 2020, 59(10): 3840-3845. |
20 | Yaghi O M, Li H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
21 | Li H L, Eddaoudi M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
22 | Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283(5405): 1148-1150. |
23 | Deng H, Grunder S, Cordova K E, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084): 1018-1023. |
24 | Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
25 | Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
26 | Moghadam P Z, Li A, Liu X W, et al. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD)[J]. Chemical Science, 2020, 11(32): 8373-8387. |
27 | Hou Q Q, Zhou S, Wei Y Y, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation[J]. Journal of the American Chemical Society, 2020, 142(21): 9582-9586. |
28 | Dakhchoune M, Villalobos L F, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20(3): 362-369. |
29 | Zhang S, Gui B, Ben T, et al. Switchable molecular sieving of a capped metal organic framework membrane[J]. Journal of Materials Chemistry A, 2020, 8(38): 19984-19990. |
30 | Ding M L, Flaig R W, Jiang H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
31 | Boyd P G, Chidambaram A, García-Díez E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
32 | Rojas S, Horcajada P. Metal-organic frameworks for the removal of emerging organic contaminants in water[J]. Chemical Reviews, 2020, 120(16): 8378-8415. |
33 | Wang Y, Yan J, Wen N, et al. Metal-organic frameworks for stimuli-responsive drug delivery[J]. Biomaterials, 2020, 230: 119619. |
80 | Zhang J H, Xie S M, Zi M, et al. Recent advances of application of porous molecular cages for enantioselective recognition and separation[J]. Journal of Separation Science, 2020, 43(1): 134-149. |
81 | Little M A, Cooper A I. The chemistry of porous organic molecular materials[J]. Advanced Functional Materials, 2020, 30(41): 1909842. |
82 | Hasell T, Cooper A I. Porous organic cages: soluble, modular and molecular pores[J]. Nature Reviews Materials, 2016, 1: 16053. |
83 | Duchamp D J, Marsh R E. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid)[J]. Acta Crystallographica Section B, 1969, 25(1): 5-19. |
84 | He Y B, Xiang S C, Chen B L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature[J]. Journal of the American Chemical Society, 2011, 133(37): 14570-14573. |
85 | Nugent P S, Rhodus V L, Pham T, et al. A robust molecular porous material with high CO2 uptake and selectivity[J]. Journal of the American Chemical Society, 2013, 135(30): 10950-10953. |
86 | Li P, He Y, Arman H D, et al. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6[J]. Chemical Communications, 2014, 50(86): 13081-13084. |
87 | Lü J, Perez-Krap C, Suyetin M, et al. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity[J]. Journal of the American Chemical Society, 2014, 136(37): 12828-12831. |
88 | Zhang X, Wang J X, Li L B, et al. A rod-packing hydrogen-bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation[J]. Angewandte Chemie International Edition, 2021, 60(18): 10304-10310. |
89 | Liang J, Xing S, Brandt P, et al. A chemically stable cucurbit [6] uril-based hydrogen-bonded organic framework for potential SO2/CO2 separation[J]. Journal of Materials Chemistry A, 2020, 8(38): 19799-19804. |
90 | Zhu J Y, Yuan S S, Wang J, et al. Microporous organic polymer-based membranes for ultrafast molecular separations[J]. Progress in Polymer Science, 2020, 110: 101308. |
91 | Li P, He Y B, Guang J, et al. A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols[J]. Journal of the American Chemical Society, 2014, 136(2): 547-549. |
92 | Wang B, He R, Xie L H, et al. Microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline[J]. Journal of the American Chemical Society, 2020, 142(28): 12478-12485. |
93 | Gong W, Chu D D, Jiang H, et al. Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis[J]. Nature Communications, 2019, 10: 600. |
94 | Yang W, Wang J W, Wang H L, et al. Highly interpenetrated robust microporous hydrogen-bonded organic framework for gas separation[J]. Crystal Growth & Design, 2017, 17(11): 6132-6137. |
95 | Yin Q, Zhao P, Sa R J, et al. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy[J]. Angewandte Chemie, 2018, 130(26): 7817-7822. |
96 | Wang B, Lv X L, Lv J, et al. A novel mesoporous hydrogen-bonded organic framework with high porosity and stability[J]. Chemical Communications, 2019, 56(1): 66-69. |
97 | Wang Y J, Yin J B, Liu D, et al. Guest-tuned proton conductivity of a porphyrinylphosphonate-based hydrogen-bonded organic framework[J]. Journal of Materials Chemistry A, 2021, 9(5): 2683-2688. |
98 | Li P, He Y B, Zhao Y F, et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie, 2015, 127(2): 584-587. |
99 | Yang W, Zhou W, Chen B L. A flexible microporous hydrogen-bonded organic framework[J]. Crystal Growth & Design, 2019, 19(9): 5184-5188. |
100 | Wang B, Lin R B, Zhang Z J, et al. Hydrogen-bonded organic frameworks as a tunable platform for functional materials[J]. Journal of the American Chemical Society, 2020, 142(34): 14399-14416. |
34 | Wei Y S, Zhang M, Zou R Q, et al. Metal-organic framework-based catalysts with single metal sites[J]. Chemical Reviews, 2020, 120(21): 12089-12174. |
35 | Xie L S, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8536-8580. |
36 | Yin H Q, Yin X B. Metal-organic frameworks with multiple luminescence emissions: designs and applications[J]. Accounts of Chemical Research, 2020, 53(2): 485-495. |
37 | Zhou S, Wei Y Y, Zhuang L B, et al. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates[J]. Journal of Materials Chemistry A, 2017, 5(5): 1948-1951. |
38 | Sun Y W, Liu Y, Caro J, et al. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity[J]. Angewandte Chemie, 2018, 130(49): 16320-16325. |
39 | Guo H, Liu J Q, Li Y H, et al. Post-synthetic modification of highly stable UiO-66-NH2 membranes on porous ceramic tubes with enhanced H2 separation[J]. Microporous and Mesoporous Materials, 2021, 313: 110823. |
40 | Rong R, Sun Y W, Ji T T, et al. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth[J]. Journal of Membrane Science, 2020, 610: 118275. |
41 | Lu C J, Wang G, Wang K L, et al. Modified porous SiO2-supported Cu3(BTC)2 membrane with high performance of gas separation[J]. Materials (Basel, Switzerland), 2018, 11(7): E1207. |
42 | Hayashi M, Lee D T, de Mello M D, et al. ZIF-8 membrane permselectivity modification by manganese (Ⅱ) acetylacetonate vapor treatment[J]. Angewandte Chemie International Edition, 2021, 60(17): 9316-9320. |
43 | Qiao Z H, Liang Y Y, Zhang Z Q, et al. Ultrathin low-crystallinity MOF membranes fabricated by interface layer polarization induction[J]. Advanced Materials, 2020, 32(34): 2002165. |
44 | Yaghi O M. Reticular chemistry—construction, properties, and precision reactions of frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15507-15509. |
45 | Yaghi O M. Reticular chemistry in all dimensions[J]. ACS Central Science, 2019, 5(8): 1295-1300. |
46 | Wang Z F, Zhang S N, Chen Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708-735. |
47 | Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
48 | Kandambeth S, Dey K, Banerjee R. Covalent organic frameworks: chemistry beyond the structure[J]. Journal of the American Chemical Society, 2019, 141(5): 1807-1822. |
49 | Evans A M, Castano I, Brumberg A, et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(50): 19728-19735. |
50 | Ma T, Kapustin E A, Yin S X, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks[J]. Science, 2018, 361(6397): 48-52. |
51 | Li Y, Wang C, Ma S J, et al. Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11706-11714. |
52 | Wei S C, Zhang F, Zhang W B, et al. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages[J]. Journal of the American Chemical Society, 2019, 141(36): 14272-14279. |
53 | Geng K Y, He T, Liu R Y, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
54 | Dey K, Pal M, Rout K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. |
55 | Huang N, Krishna R, Jiang D L. Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening[J]. Journal of the American Chemical Society, 2015, 137(22): 7079-7082. |
56 | Ding S Y, Wang W. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
57 | Segura J L, Royuela S, Mar Ramos M. Post-synthetic modification of covalent organic frameworks[J]. Chemical Society Reviews, 2019, 48(14): 3903-3945. |
58 | Yuan Y, Zhu G S. Porous aromatic frameworks as a platform for multifunctional applications[J]. ACS Central Science, 2019, 5(3): 409-418. |
59 | Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460. |
60 | Tian Y Y, Zhu G S. Porous aromatic frameworks (PAFs)[J]. Chemical Reviews, 2020, 120(16): 8934-8986. |
61 | Ma T T, Zhao X, Matsuo Y, et al. Fluorescein-based fluorescent porous aromatic framework for Fe3+ detection with high sensitivity[J]. Journal of Materials Chemistry C, 2019, 7(8): 2327-2332. |
62 | Tian Z Q, Dai S, Jiang D E. Confined ionic liquid in an ionic porous aromatic framework for gas separation[J]. ACS Applied Polymer Materials, 2019, 1(1): 95-102. |
101 | 林祖金, 曹荣. 多孔氢键有机框架(HOFs): 现状与挑战[J]. 化学学报, 2020, 78(12): 1309-1335. |
Lin Z J, Cao R. Porous hydrogen-bonded organic frameworks(HOFs): status and challenges[J]. Acta Chimica Sinica, 2020, 78(12): 1309-1335. | |
102 | Lin R B, He Y, Li P, et al. Multifunctional porous hydrogen-bonded organic framework materials[J]. Chemical Society Reviews, 2019, 48(5): 1362-1389. |
103 | Huang A S, Bux H, Steinbach F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angewandte Chemie International Edition, 2010, 49(29): 4958-4961. |
104 | Liu Y, Wang N Y, Pan J H, et al. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates[J]. Journal of the American Chemical Society, 2014, 136(41): 14353-14356. |
105 | Liang B, Wang H, Shi X, et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration[J]. Nature Chemistry, 2018, 10(9): 961-967. |
106 | Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
107 | Liu Q, Wang N Y, Caro J, et al. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes[J]. Journal of the American Chemical Society, 2013, 135(47): 17679-17682. |
108 | Jiang X, Li S W, Bai Y P, et al. Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation[J]. Journal of Materials Chemistry A, 2019, 7(18): 10898-10904. |
109 | Fu J R, Das S, Xing G L, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. Journal of the American Chemical Society, 2016, 138(24): 7673-7680. |
110 | Jiang Y, Ryu G H, Joo S H, et al. Porous two-dimensional monolayer metal-organic framework material and its use for the size-selective separation of nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 28107-28116. |
111 | Motoyama S, Makiura R, Sakata O, et al. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets[J]. Journal of the American Chemical Society, 2011, 133(15): 5640-5643. |
112 | Makiura R, Konovalov O. Interfacial growth of large-area single-layer metal-organic framework nanosheets[J]. Sci. Rep., 2013, 3: 2506. |
113 | Shinde D, Sheng G, Li X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2018, 140(43): 14342-14349. |
114 | Wang H, Chen L, Yang H, et al. Brønsted acid mediated covalent organic framework membranes for efficient molecular separation[J]. Journal of Materials Chemistry A, 2019, 7(35): 20317-20324. |
115 | Khan N A, Zhang R N, Wu H, et al. Solid-vapor interface engineered covalent organic framework membranes for molecular separation[J]. Journal of the American Chemical Society, 2020, 142(31): 13450-13458. |
116 | Villalobos L F, Huang T F, Peinemann K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials, 2017, 29(26): 1606641. |
117 | Richardson J J, Bjornmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. Science, 2015, 348(6233): aaa2491. |
118 | Richardson J J, Cui J W, Björnmalm M, et al. Innovation in layer-by-layer assembly[J]. Chemical Reviews, 2016, 116(23): 14828-14867. |
119 | Wang S, Yang L, He G, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4): 1071-1089. |
120 | Shekhah O, Swaidan R, Belmabkhout Y, et al. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study[J]. Chemical Communications, 2014, 50(17): 2089-2092. |
121 | Nagaraju D, Bhagat D G, Banerjee R, et al. In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation[J]. Journal of Materials Chemistry A, 2013, 1(31): 8828-8835. |
122 | Lee D J, Li Q M, Kim H, et al. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique[J]. Microporous and Mesoporous Materials, 2012, 163: 169-177. |
123 | Nijem N, Fürsich K, Kelly S T, et al. HKUST-1 thin film layer-by-layer liquid phase epitaxial growth: film properties and stability dependence on layer number[J]. Crystal Growth & Design, 2015, 15(6): 2948-2957. |
124 | Li G, Zhang K, Tsuru T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8433-8436. |
125 | 刘露月, 吕荥宾, 刘壮, 等. 层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展[J]. 膜科学与技术, 2020, 40(1): 228-239. |
Liu L Y, Lyu X B, Liu Z, et al. Research progress on the stability improvement and interlayer-spacing regulation of graphene-based membranes with laminar structures[J]. Membrane Science and Technology, 2020, 40(1): 228-239. | |
126 | Kuehl V, Yin J S, Duong P H H, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving[J]. Journal of the American Chemical Society, 2018, 140(51): 18200-18207. |
127 | Zhang W X, Zhang L M, Zhao H F, et al. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving[J]. Journal of Materials Chemistry A, 2018, 6(27): 13331-13339. |
128 | Zhou S, Wei Y, Li L, et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10): eaau1393. |
129 | Cao L, He X Y, Jiang Z Y, et al. Channel-facilitated molecule and ion transport across polymer composite membranes[J]. Chemical Society Reviews, 2017, 46(22): 6725-6745. |
130 | Wang H J, Wang M D, Liang X, et al. Organic molecular sieve membranes for chemical separations[J]. Chemical Society Reviews, 2021, 50: 5468-5516. |
131 | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(Z1): 223-232. |
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(Z1): 223-232. | |
132 | 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56. |
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56. | |
133 | Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
134 | D'Alessandro D, Smit B, Long J. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. |
135 | Ban Y J, Li Z J, Li Y S, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angewandte Chemie International Edition, 2015, 54(51): 15483-15487. |
136 | Cacho-Bailo F, Catalan-Aguirre S, Etxeberria-Benavides M, et al. Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis[J]. Journal of Membrane Science, 2015, 476: 277-285. |
137 | Kong L Y, Zhang X F, Liu Y G, et al. In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system[J]. Materials Chemistry and Physics, 2014, 148(1/2): 10-16. |
138 | Wang Y H, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angewandte Chemie International Edition, 2020, 59(11): 4365-4369. |
139 | Rui Z B, James J B, Kasik A, et al. Metal-organic framework membrane process for high purity CO2 production[J]. AIChE Journal, 2016, 62(11): 3836-3841. |
140 | Hou Q Q, Wu Y, Zhou S, et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation[J]. Angewandte Chemie International Edition, 2019, 58(1): 327-331. |
141 | Tong M M, Zhang Y D, Yan T, et al. Computational insights on the role of nanochannel environment in the CO2/CH4 and H2/CH4 separation using restacked covalent organic framework membranes[J]. The Journal of Physical Chemistry C, 2019, 123(37): 22949-22958. |
142 | Yan T, Lan Y S, Tong M M, et al. Screening and design of covalent organic framework membranes for CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1220-1227. |
143 | Baena-Moreno F M, Rodríguez-Galán M, Vega F, et al. Carbon capture and utilization technologies: a literature review and recent advances[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(12): 1403-1433. |
144 | Feng Y, Wang Z K, Fan W D, et al. Engineering the pore environment of metal–organic framework membranes via modification of the secondary building unit for improved gas separation[J]. Journal of Materials Chemistry A, 2020, 8(26): 13132-13141. |
145 | Liu W, Jiang S D, Yan Y G, et al. A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation[J]. Nature Communications, 2020, 11: 1633. |
146 | Fan H, Peng M, Strauss I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation[J]. Nature Communications, 2021, 12(1): 38. |
147 | Li Y, Liu H, Wang H, et al. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation[J]. Chemical Science, 2018, 9(17): 4132-4141. |
148 | Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
149 | Fan H W, Peng M H, Strauss I, et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation[J]. Journal of the American Chemical Society, 2020, 142(15): 6872-6877. |
150 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
151 | Zhang C, Lively R P, Zhang K, et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8[J]. The Journal of Physical Chemistry Letters, 2012, 3(16): 2130-2134. |
152 | 潘宜昌, 邢卫红. 丙烯/丙烷分离的ZIF-8膜研究进展[J]. 化工进展, 2020, 39(6): 2036-2048. |
Pan Y C, Xing W H. Recent progress of ZIF-8 membrane for propylene/propane separation[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2036-2048. | |
153 | Pan Y C, Li T, Lestari G, et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes[J]. Journal of Membrane Science, 2012, 390/391: 93-98. |
154 | Kwon H T, Jeong H K, Lee A S, et al. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances[J]. Journal of the American Chemical Society, 2015, 137(38): 12304-12311. |
155 | Zhao Y L, Wei Y Y, Lyu L X, et al. Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation[J]. Journal of the American Chemical Society, 2020, 142(50): 20915-20919. |
156 | Ma Q, Mo K, Gao S S, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angewandte Chemie, 2020, 132(49): 22093-22098. |
157 | Anderson R, Schweitzer B, Wu T, et al. Molecular simulation insights on Xe/Kr separation in a set of nanoporous crystalline membranes[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 582-592. |
158 | Sumer Z, Keskin S. Molecular simulations of MOF adsorbents and membranes for noble gas separations[J]. Chemical Engineering Science, 2017, 164: 108-121. |
159 | Wu T, Feng X H, Elsaidi S K, et al. Zeolitic imidazolate framework-8 (ZIF-8) membranes for Kr/Xe separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(6): 1682-1686. |
160 | Wu T, Lucero J, Sinnwell M A, et al. Recovery of xenon from air over ZIF-8 membranes[J]. Chemical Communications, 2018, 54(65): 8976-8979. |
161 | Lucero J M, Carreon M A. Separation of light gases from xenon over porous organic cage membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 32182-32188. |
[1] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[2] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[3] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[4] | Xuemei LANG, Liumei YAO, Shuanshi FAN, Gang LI, Yanhong WANG. Numerical simulation of methane hydrate formation and heat transfer in porous materials [J]. CIESC Journal, 2022, 73(9): 3851-3860. |
[5] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[6] | Qingling QIAN, Qing ZHU, Zhengjin YANG, Tongwen XU. Microporous Noria polymer for selective adsorption and separation of xylene isomers [J]. CIESC Journal, 2022, 73(12): 5438-5448. |
[7] | Guixian LI, Ke WANG, Jian WANG, Wenliang MENG, Jingwei LI, Yong YANG, Zongliang FAN, Dongliang WANG, Huairong ZHOU. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant [J]. CIESC Journal, 2022, 73(11): 5065-5077. |
[8] | WU Zhongjie, LIU Zeyan, XIE Lianke, CUI Mei, HUANG Renliang. Preparation of hydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation and heavy metal ions adsorption [J]. CIESC Journal, 2021, 72(S1): 421-429. |
[9] | XIA Dong, HUANG Peng, LI Heng. Joule-heating studies of electrically conducting three-dimensional graphene aerogels prepared by hydrothermal assembly [J]. CIESC Journal, 2021, 72(7): 3839-3848. |
[10] | DU Juan, GONG Zhiqiang, HUANG Caoxing, LIANG Chen, YAO Shuangquan, LIU Yang. Resin adsorption - ultrafiltration synergistic separation of alkaline extracted hemicellulose from bagasse [J]. CIESC Journal, 2021, 72(4): 2139-2147. |
[11] | Ya ZHANG, Rui WANG, Sisi WEN, Yisa ZHOU, Jian XUE, Haihui WANG. Research progress of graphitic carbon nitride nanosheets membrane [J]. CIESC Journal, 2021, 72(12): 6188-6202. |
[12] | Yanfang WANG,Heng MAO,Weiwei CAI,Aoshuai ZHANG,Lihao XU,Zhiping ZHAO. Enhancing ethanol production efficiency by ZIF-L/PDMS mixed matrix membrane via vapor permeation-fermentation coupling process [J]. CIESC Journal, 2021, 72(10): 5226-5236. |
[13] | WANG Chenlu, WANG Yanlei, ZHAO Qiu, LYU Yumiao, HUO Feng, HE Hongyan. Research progress of low-dimensional nanoconfined ionic liquids [J]. CIESC Journal, 2021, 72(1): 366-383. |
[14] | Yun ZHAO, Zhonghua XIANG. Progress of microfluidic synthesis of metal/covalent organic frameworks [J]. CIESC Journal, 2020, 71(6): 2547-2563. |
[15] | Li CHEN, Cailong ZHOU, Jingcheng DU, Wei ZHOU, Luxi TAN, Lichun DONG. Progress of superhydrophobic porous materials [J]. CIESC Journal, 2020, 71(10): 4502-4519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||