CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3194-3201.DOI: 10.11949/0438-1157.20201615
• Reviews and monographs • Previous Articles Next Articles
JIANG Lan(),LUO Yong(),ZOU Haikui,SUN Baochang,ZHANG Liangliang,CHU Guangwen
Received:
2020-11-10
Revised:
2021-03-23
Online:
2021-06-05
Published:
2021-06-05
Contact:
LUO Yong
通讯作者:
罗勇
作者简介:
江澜(1996—),男,博士研究生,基金资助:
CLC Number:
JIANG Lan, LUO Yong, ZOU Haikui, SUN Baochang, ZHANG Liangliang, CHU Guangwen. Research progress of HiGee multiphase catalytic reactor[J]. CIESC Journal, 2021, 72(6): 3194-3201.
江澜, 罗勇, 邹海魁, 孙宝昌, 张亮亮, 初广文. 超重力多相催化反应器的研究进展[J]. 化工学报, 2021, 72(6): 3194-3201.
Add to citation manager EndNote|Ris|BibTeX
1 | 陈建峰, 初广文, 邹海魁, 等. 超重力反应工程[M]. 北京: 化学工业出版社, 2020. |
Chen J F, Chu G W, Zou H K, et al. HiGee Reaction Engineering[M]. Beijing: Chemical Industry Press, 2020. | |
2 | Wenmakers P. Hairy Foam: Carbon nanofibers on solid foam as catalyst support—synthesis, mass transfer, and reactor modeling[D]. Eindhoven: Eindhoven University of Technology, 2009. |
3 | Stamatiou I K, Muller F L. Determination of mass transfer resistances of fast reactions in three-phase mechanically agitated slurry reactors[J]. AIChE Journal, 2017, 63(1): 273-282. |
4 | Kang S H, Bae J W, Cheon J Y, et al. Catalytic performance on iron-based Fischer-Tropsch catalyst in fixed-bed and bubbling fluidized-bed reactor[J]. Applied Catalysis B: Environmental, 2011, 103(1/2): 169-180. |
5 | Nam W, Kim J, Han G. Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor[J]. Chemosphere, 2002, 47(9): 1019-1024. |
6 | Murthy B N, Ghadge R S, Joshi J B. CFD simulations of gas-liquid-solid stirred reactor: prediction of critical impeller speed for solid suspension[J]. Chemical Engineering Science, 2007, 62(24): 7184-7195. |
7 | van der Laan G P, Beenackers A A C M, Krishna R. Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors[J]. Chemical Engineering Science, 1999, 54(21): 5013-5019. |
8 | Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593. |
9 | Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
10 | Gavi E, Marchisio D L, Barresi A A. CFD modelling and scale-up of confined impinging jet reactors[J]. Chemical Engineering Science, 2007, 62(8): 2228-2241. |
11 | Gerbec J A, Magana D, Washington A, et al. Microwave-enhanced reaction rates for nanoparticle synthesis[J]. Journal of the American Chemical Society, 2005, 127(45): 15791-15800. |
12 | Liu W, Luo Y, Li Y B, et al. Scale-up of a rotating packed bed reactor with a mesh-pin rotor(Ⅱ): Mass transfer and application[J]. Industrial & Engineering Chemistry Research, 2020, 59(11): 5124-5132. |
13 | Cai Y, Luo Y, Chu G W, et al. NOx removal in a rotating packed bed: oxidation and enhanced absorption process optimization[J]. Separation and Purification Technology, 2019, 227: 115682. |
14 | Zhang D, Zhang P Y, Zou H K, et al. Application of HiGee process intensification technology in synthesis of petroleum sulfonate surfactant[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 508-513. |
15 | Du J T, Shi J, Sun Q, et al. High-gravity-assisted preparation of aqueous dispersions of monodisperse palladium nanocrystals as pseudohomogeneous catalyst for highly efficient nitrobenzene reduction[J]. Chemical Engineering Journal, 2020, 382: 122883. |
16 | Cortes Garcia G E, van der Schaaf J, Kiss A A. A review on process intensification in HiGee distillation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1136-1156. |
17 | Ramshaw C, Mallinson R H. Mass transfer apparatus and its use: EP0002568[P].1979-6-27. |
18 | Luo Y, Chu G W, Zou H K, et al. Gas-liquid effective interfacial area in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16320-16325. |
19 | Su M J, Bai S, Luo Y, et al. Controllable wettability on stainless steel substrates with highly stable coatings[J]. Chemical Engineering Science, 2019, 195: 791-800. |
20 | Su M J, Luo Y, Chu G W, et al. Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure[J]. Chemical Engineering Science, 2020, 219: 115593. |
21 | Su M J, Le Y, Chu G W, et al. Intensification of droplet dispersion by using multilayer wire mesh and its application in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3584-3592. |
22 | Zhang J P, Luo Y, Chu G W, et al. A hydrophobic wire mesh for better liquid dispersion in air[J]. Chemical Engineering Science, 2017, 170: 204-212. |
23 | Zhang J P, Liu W, Luo Y, et al. Enhancing liquid droplet breakup by hydrophobic wire mesh: visual study and application in a rotating packed bed[J]. Chemical Engineering Science, 2019, 209: 115180. |
24 | Xu Y C, Li Y B, Liu Y Z, et al. Liquid jet impaction on the single-layer stainless steel wire mesh in a rotating packed bed reactor[J]. AIChE Journal, 2019, 65(6): e16597. |
25 | 曹晶, 郭瑞生. 液化气脱硫醇装置提高碱液利用率研究[J]. 化工设计通讯, 2017, 43(11): 104,122. |
Cao J, Guo R S. Study on utilization of alkali solution in LPG sweetening unit[J]. Chemical Engineering Design Communications, 2017, 43(11): 104,122. | |
26 | Zhan Y Y, Shi J, Su M J, et al. Kinetics of catalytic oxidation of sodium ethyl mercaptide[J]. Chemical Engineering Science, 2020, 217: 115516. |
27 | Zhan Y Y, Wan Y F, Su M J, et al. Spent caustic regeneration in a rotating packed bed: reaction and separation process intensification[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14588-14594. |
28 | Zhan Y Y, Cai Y, Chu G W, et al. Intensified regeneration performance of spent caustic from LPG sweetening by HiGee reactor[J]. Chemical Engineering Research and Design, 2020, 156: 281-288. |
29 | Pei D Y, Su M J, Wang Y Y, et al. Process intensification of 2, 3, 6-trimethylphenol oxidation in a rotating packed bed reactor[J]. Chemical Engineering and Processing - Process Intensification, 2020, 149: 107842. |
30 | Gao X Y, Chu G W, Ouyang Y, et al. Gas flow characteristics in a rotating packed bed by particle image velocimetry measurement[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14350-14361. |
31 | 高雪颖. 旋转填充床中气相流动与气固催化反应的研究[D]. 北京: 北京化工大学, 2017. |
Gao X Y. Characteristics of gas flow and gas-solid catalytic reaction in a rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
32 | Chen J F, Liu Y, Zhang Y. Control of product distribution of Fischer-Tropsch synthesis with a novel rotating packed-bed reactor: from diesel to light olefin[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8700-8703. |
33 | Sang L, Luo Y, Chu G W, et al. A three-zone mass transfer model for a rotating packed bed[J]. AIChE Journal, 2019, 65(6): e16595. |
34 | 桑乐, 罗勇, 初广文, 等. 超重力场内气液传质强化研究进展[J]. 化工学报, 2015, 66(1): 14-31. |
Sang L, Luo Y, Chu G W, et al. Research progress of gas-liquid mass transfer enhancement in high gravity field[J]. CIESC Journal, 2015, 66(1): 14-31. | |
35 | Swithenbank J. Heat and/or mass transfer processes and apparatus: US6354018[P]. 2002-03-12. |
36 | Liu Y, Luo Y, Chu G W, et al. 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing[J]. Chemical Engineering Science, 2017, 170: 365-377. |
37 | Liu Y Z, Luo Y, Chu G W, et al. Liquid holdup and wetting efficiency in a rotating trickle-bed reactor[J]. AIChE Journal, 2019, 65(8): e16618. |
38 | Liu Y Z, Chu G W, Li Y B, et al. Liquid-solid mass transfer in a rotating trickle-bed reactor: mathematical modeling and experimental verification[J]. Chemical Engineering Science, 2020, 220: 115622. |
39 | Liu Y Z, Luo Y, Chu G W, et al. Monolithic catalysts with Pd deposited on a structured nickel foam packing[J]. Catalysis Today, 2016, 273: 34-40. |
40 | Liu Y Z, Li Z H, Chu G W, et al. Liquid-solid mass transfer in a rotating packed bed reactor with structured foam packing[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2507-2512. |
41 | 刘亚朝. 旋转滴流床反应器的流体力学特性及催化加氢反应研究[D]. 北京: 北京化工大学, 2020. |
Liu Y Z. Hydrodynamics in a rotating trickle-bed and its process intensification for catalytic hydrogenation[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
42 | Jiang L, Chu G W, Liu Y Z, et al. Preparation of cordierite monolithic catalyst for α-methylstyrene hydrogenation in a rotating packed bed reactor[J]. Chemical Engineering and Processing - Process Intensification, 2020, 150: 107882. |
43 | Wang D, Liu Y Z, Wang B J, et al. Process intensification of quasi-homogeneous catalytic hydrogenation in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1383-1392. |
44 | 王迪. 超重力反应器蒽醌法制备双氧水研究[D]. 北京: 北京化工大学, 2020. |
Wang D. Study on preparation of hydrogen peroxide by anthraquinone method in a rotating packed bed reactor[D]. Beijing: Beijing University of Chemical Technology, 2020. |
[1] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[2] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[3] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[4] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[5] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[6] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[7] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[8] | Hao CHEN, Yijuan TIAN, Xuejun QUAN, Ziwen JIANG, Gang LI. Decomposition behaviour of chromite in the HCl-HF system [J]. CIESC Journal, 2023, 74(3): 1161-1174. |
[9] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[10] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[11] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[12] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[13] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
[14] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[15] | Peng QIU, Yang HAN, Jianliang XU, Fuchen WANG, Zhenghua DAI. Study of EDC parameters for predicting entrained flow coal gasification [J]. CIESC Journal, 2023, 74(1): 428-437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||