1 |
胡帼杰, 过增元. 传热过程的效率[J]. 工程热物理学报, 2011, 32(6): 1005-1008.
|
|
Hu G J, Guo Z Y. The efficiency of heat transfer process[J]. Journal of Engineering Thermophysics, 2011, 32(6): 1005-1008.
|
2 |
武凯歌, 王传志. 绿色低碳背景下内燃机优化设计研究现状及趋势[J]. 决策探索(中), 2017, (10): 85-86.
|
|
Wu K G, Wang C Z. Research status and trend of optimization design of internal combustion engine under green and low-carbon background [J]. Policy Research and Exploration, 2017, (10): 85-86.
|
3 |
Razuvaev A V, Slobodina E N. The operating conditions of the internal combustion engine with high temperature cooling[J]. Journal of Physics: Conference Series, 2020, 1441: 012026.
|
4 |
过增元. 国际传热研究前沿: 微细尺度传热[J]. 力学进展, 2000, 30(1): 1-6.
|
|
Guo Z Y. Frontier of heat transfer─microscale heat transfer[J]. Advances in Mechanics, 2000, 30(1): 1-6.
|
5 |
邱学军, 白曙, 侯刘闻迪. 内燃机冷却水腔表面形貌对沸腾换热影响的研究[J]. 柴油机设计与制造, 2020, 26(1): 9-15.
|
|
Qiu X J, Bai S, Hou L. Study on effect of surface morphology on boiling heat transfer in water jacket of internal combustion engine[J]. Design and Manufacture of Diesel Engine, 2020, 26(1): 9-15.
|
6 |
Azároff L V. The key to the future of materials: interdisciplinarity[J]. JOM, 1991, 43(2): 27-29.
|
7 |
Wang Y Q, Luo J L, Heng Y, et al. Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure[J]. International Journal of Heat and Mass Transfer, 2018, 119: 333-342.
|
8 |
Szczukiewicz S, Borhani N, Thome J R. Two-phase heat transfer and high-speed visualization of refrigerant flows in 100 × 100 μm2 silicon multi-microchannels[J]. International Journal of Refrigeration, 2013, 36(2): 402-413.
|
9 |
Liang G T, Mudawar I. Review of channel flow boiling enhancement by surface modification, and instability suppression schemes[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118864.
|
10 |
牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301.
|
|
Mou S, Zhao C Y, Xu Z G. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1291-1301.
|
11 |
Maddox D E, Mudawar I. Single- and two-phase convective heat transfer from smooth and enhanced microelectronic heat sources in a rectangular channel[J]. Journal of Heat Transfer, 1989, 111(4): 1045-1052.
|
12 |
He B L, Luo X P, Yu F, et al. Flow boiling characteristics in bi-porous minichannel heat sink sintered with copper woven tape[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119988.
|
13 |
Zhao Z C, Ma X L, Li S L, et al. Visualization-based nucleate pool boiling heat transfer enhancement on different sizes of square micropillar array surfaces[J]. Experimental Thermal and Fluid Science, 2020, 119: 110212.
|
14 |
Wang H Z, Yang Y C, He M H, et al. Subcooled flow boiling heat transfer in a microchannel with chemically patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 140: 587-597.
|
15 |
杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989.
|
|
Du B Z, Li H J, Guo B C, et al. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(12): 4979-4989.
|
16 |
Hu H T, Zhao Y X, Lai Z C, et al. Experimental investigation on nucleate pool boiling heat transfer characteristics on hydrophobic metal foam covers[J]. Applied Thermal Engineering, 2020, 179: 115730.
|
17 |
Sadaghiani A K, Altay R, Noh H, et al. Effects of bubble coalescence on pool boiling heat transfer and critical heat flux —a parametric study based on artificial cavity geometry and surface wettability[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118952.
|
18 |
巩子琦, 蔡杰进, 王烨. 单个气泡上升行为的可视化实验研究[J]. 核科学与工程, 2019, 39(6): 1030-1039.
|
|
Gong Z Q, Cai J J, Wang Y. PIV experimental study of single bubble rising behavior[J]. Nuclear Science and Engineering, 2019, 39(6): 1030-1039.
|
19 |
Lee D, Kim B S, Moon H, et al. Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1020-1030.
|
20 |
Kim J S, Girard A, Jun S, et al. Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces[J]. International Journal of Heat and Mass Transfer, 2018, 118: 802-811.
|
21 |
杜玉浩. 发动机冷却水腔沸腾换热模型研究[D]. 济南: 山东大学, 2018.
|
|
Du Y H. Research on boiling heat transfer model of engine cooling water chamber[D]. Jinan: Shandong University, 2018.
|
22 |
Yamamoto K, Ogata S. 3-D thermodynamic analysis of superhydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2008, 326(2): 471-477.
|
23 |
Patankar N A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir, 2004, 20(17): 7097-7102.
|
24 |
李雪伍. 5052铝合金表面微纳结构的制备与性能研究[D]. 武汉: 武汉理工大学, 2017.
|
|
Li X W. Preparation and performance research of micro-nano structures on 5052 Al alloy surface[D]. Wuhan: WuhanUniversity of Technology, 2017.
|
25 |
Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial and Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
|
26 |
陈佳明, 郭飞. 亲疏水共型表面升温过程中气泡生长行为研究[J]. 工程热物理学报, 2020, 41(8): 1966-1973.
|
|
Chen J M, Guo F. Investigation of bubble growth behaviors on hydrophilic-hydrophobic conformal surfaces during heating process[J]. Journal of Engineering Thermophysics, 2020, 41(8): 1966-1973.
|
27 |
Yuan B, Zhang Y H, Zhou J, et al. Critical heat flux prediction model for flow boiling on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119693.
|
28 |
Basu N, Warrier G R, Dhir V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4): 717-728.
|
29 |
Paz C, Conde M, Porteiro J, et al. Effect of heating surface morphology on active site density in subcooled flow nucleated boiling[J]. Experimental Thermal and Fluid Science, 2017, 82: 147-159.
|
30 |
Končar B, Kljenak I, Mavko B. Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure[J]. International Journal of Heat and Mass Transfer, 2004, 47(6/7): 1499-1513.
|
31 |
Hibiki T, Ishii M. Active nucleation site density in boiling systems[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2587-2601.
|