[1] |
JIN W, ZHANG Z, WU G, et al. Integrated lignin-mediated adsorption-release process and electrochemical reduction for the removal of trace Cr(Ⅵ)[J]. RSC Advances, 2014, 4(53):27843-27849.
|
[2] |
COSTA M. Potential hazards of hexavalent chromate in our drinking water.[J]. Toxicology & Applied Pharmacology, 2003, 188(1):1-5.
|
[3] |
ORGANIZATION W H. Guidelines for drinking-water quality. Vol1, Recommendations:addendum[J]. Guidelines for Drinking-water Quality, 2006, 38(3):104-108.
|
[4] |
康新平, 刘洪海, 陈坚. 液体样品中铬的价态和微量分析方法的研究进展[J]. 理化检验(化学分册), 1999, 35(3):139-142. KANG X P, LIU H H, CHEN J. On the valency and progress of analytical method of chromium in water solution[J].PTCA(PART B:Chemical Analysis), 1999, 35(3):139-142.
|
[5] |
KREUZ B. Separation and determination of Cr(Ⅲ) and Cr(Ⅵ) with cation-exchange chromatography and atomic absorption spectroscopy. An experiment for quantitative methods of analysis[J]. Journal of Chemical Education, 2005, 82(3):435-438.
|
[6] |
WILLIAMS T, JONES P, EBDON L. Simultaneous determination of Cr(Ⅲ) and Cr(Ⅵ) at ultratrace levels using ion chromatography with chemiluminescence detection[J]. Journal of Chromatography A, 1989, 482(2):361-366.
|
[7] |
WANG L, XIA T, LIU J, et al. Preparation and application of a novel core/shell organic nanoparticle as a fluorescence probe in the selective determination of Cr(Ⅵ)[J]. Spectrochimica Acta Part A Molecular &Biomolecular Spectroscopy, 2005, 62(1/2/3):565-569.
|
[8] |
LEVITSKAIA T G, O'HAR M J, SINKOV S I, et al. Direct spectrophotometric analysis of Cr(Ⅵ) using a liquid waveguide capillary cell[J]. Applied Spectroscopy, 2008, 62(1):107.
|
[9] |
AND S M B, BRODBELT J S, MARCHAND A P, et al. Evaluation of binding selectivities of caged crown ligands toward heavy metals by electrospray ionization/quadrupole ion trap mass spectrometry[J]. Analytical Chemistry, 2000, 72(11):2433-2445.
|
[10] |
BARD A J, FAULKNER L R. Electrochemical Methods:Fundamentals and Applications[M]. Wiley, 1980.
|
[11] |
WANG J, BIAN C, TONG J, et al. Microsensor chip integrated with gold nanoparticles-modified ultramicroelectrode array for improved electroanalytical measurement of copper ions[J]. Electroanalysis, 2013, 25(7):1713-1721.
|
[12] |
LI J, ZHANG J, WEI H, et al. Combining chemical reduction with an electrochemical technique for the simultaneous detection of Cr(Ⅵ), Pb(Ⅱ) and Cd(Ⅱ)[J]. Analyst, 2009, 134(2):273-277.
|
[13] |
JIN W, WU G, CHEN A. Sensitive and selective electrochemical detection of chromium (Ⅵ) based on gold nanoparticle-decorated titania nanotube arrays[J]. Analyst, 2014, 139(1):235-241.
|
[14] |
LIN L, LAWRENCE N S, THONGNGAMDEE S, et al. Catalytic adsorptive stripping determination of trace chromium (Ⅵ) at the bismuth film electrode[J]. Talanta, 2005, 65(1):144-148.
|
[15] |
SVANCARA I, FORET P, VYTRAS K. A study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants[J]. Talanta, 2004, 64(4):844.
|
[16] |
MISCORIA S A, JACQ C, MAEDER T, et al. Screen-printed electrodes for electroanalytical sensing, of chromium Ⅵ in strong acid media[J]. Sensors & Actuators B Chemical, 2014, 195(5):294-302.
|
[17] |
CARRINGTON N A, YONG L, XUE Z L. Electrochemical deposition of sol-gel films for enhanced chromium (Ⅵ) determination in aqueous solutions[J]. Analytica Chimica Acta, 2006, 572(1):17-24.
|
[18] |
KACHOOSANGI R T, COMPTON R G. Voltammetric determination of chromium (Ⅵ) using a gold film modified carbon composite electrode[J]. Sensors & Actuators B Chemical, 2013, 178(178):555-562.
|
[19] |
HE X, ZHENG Q L, PING Y, et al. Electrochemical synthesis of silver nanoparticles-coated gold nanoporous film electrode and its application to amperometric detection for trace Cr(Ⅵ)[J]. Science China:Chemistry, 2011, 54(6):1004-1010.
|
[20] |
YANG Y, DIAO M, GAO M, et al. Facile preparation of graphene/polyaniline composite and its application for electrocatalysis hexavalent chromium reduction[J]. Electrochimica Acta, 2014, 132(19):496-503.
|
[21] |
SANTHOSH C, SARANYA M, RAMACHANDRAN R, et al. Graphene/gold nanocomposites-based thin films as an enhanced sensing platform for voltammetric detection of Cr(Ⅵ) ions[J]. Journal of Nanotechnology, 2014, DOI:org/10.1155/2014/304526.
|
[22] |
NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30):10451-10453.
|
[23] |
CHARRIER A, COATI A, ARGUNOVA T, et al. Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films[J]. Journal of Applied Physics, 2002, 92(5):2479.
|
[24] |
LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312.
|
[25] |
EIGLER S, ENZELBERGERHEIM M, GRIMM S, et al. Wet chemical synthesis of graphene[J]. Advanced Materials, 2013, 25(26):3583-3587.
|
[26] |
DENG S, LEI J, CHENG L, et al. Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine[J]. Biosensors & Bioelectronics, 2011, 26(11):4552-4558.
|
[27] |
GUO H L, WANG X F, QIAN Q Y, et al. A green approach to the synthesis of graphene nanosheets.[J]. ACS Nano, 2009, 3(9):2653-2659.
|
[28] |
CHEN K, CHEN L, CHEN Y, et al. Three-dimensional porous graphene-based composite materials:electrochemical synthesis and application[J]. Journal of Materials Chemistry, 2012, 22(39):20968-20976.
|
[29] |
WELCH C M, NEKRASSOVA O, COMPTON R G. Reduction of hexavalent chromium at solid electrodes in acidic media:reaction mechanism and analytical applications[J]. Talanta, 2005, 65(1):74-80.
|
[30] |
HALLAM P M, KAMPOUTIS D K, KADARA R O, et al. Graphite screen printed electrodes for the electrochemical sensing of chromium(Ⅵ)[J]. Analyst, 2010, 135(8):1947.
|