CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 4062-4071.DOI: 10.11949/0438-1157.20190773
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zishuai WANG(),Yaoqiang WANG,Gang XIAO,Haijia SU()
Received:
2019-07-08
Revised:
2019-09-16
Online:
2019-10-05
Published:
2019-10-05
Contact:
Haijia SU
通讯作者:
苏海佳
作者简介:
王子帅(1995—),男,硕士研究生,基金资助:
CLC Number:
Zishuai WANG,Yaoqiang WANG,Gang XIAO,Haijia SU. Photocatalytic reduction of Cr(Ⅵ) by magnetic nanomaterial Fe3O4@TiO2 under visible light[J]. CIESC Journal, 2019, 70(10): 4062-4071.
王子帅,王耀强,肖刚,苏海佳. 磁性纳米Fe3O4@TiO2可见光下光催化还原Cr(Ⅵ)[J]. 化工学报, 2019, 70(10): 4062-4071.
Add to citation manager EndNote|Ris|BibTeX
Materials | Reaction time/h | Removal rate | Ref. |
---|---|---|---|
TiO2@Au@CeO2 | 5 | 79% | [ |
TiO2/PS | 2.5 | nearly 100% | [ |
AuNPs/B-TiO2/FTO glass | 5 | 80% | [ |
CQDs-TiO2- x /rGO | 1.3 | 80% | [ |
Ag@Fe3O4@SiO2@TiO2 | 4 | nearly 100% | [ |
N-TiO2/g-C3N4@diatomite | 5 | nearly 100% | [ |
C-SO3H/CN-TiO2 | 4 | nearly 100% | [ |
Table 1 Comparison of ability of TiO2 based photocatalystto remove Cr(Ⅵ)
Materials | Reaction time/h | Removal rate | Ref. |
---|---|---|---|
TiO2@Au@CeO2 | 5 | 79% | [ |
TiO2/PS | 2.5 | nearly 100% | [ |
AuNPs/B-TiO2/FTO glass | 5 | 80% | [ |
CQDs-TiO2- x /rGO | 1.3 | 80% | [ |
Ag@Fe3O4@SiO2@TiO2 | 4 | nearly 100% | [ |
N-TiO2/g-C3N4@diatomite | 5 | nearly 100% | [ |
C-SO3H/CN-TiO2 | 4 | nearly 100% | [ |
1 | Challagulla S , Nagarjuna R , Ganesan R , et al . Acrylate-based polymerizable sol-gel synthesis of magnetically recoverable TiO2 supported Fe3O4 for Cr(Ⅵ) photoreduction in aerobic atmosphere[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 974-982. |
2 | Xu S C , Pan S S , Xu Y , et al . Efficient removal of Cr(Ⅵ) from wastewater under sunlight by Fe(Ⅱ)-doped TiO2 spherical shell[J]. Journal of Hazardous Materials, 2015, 283: 7-13. |
3 | Chen Z , Li Y , Guo M , et al . One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(Ⅵ) and Cr(Ⅲ)[J]. Journal of Hazardous Materials, 2016, 310: 188-198. |
4 | 赵宇 . 重金属废水污染现状[J]. 江西化工, 2016, 2: 207-208. |
Zhao Y . Pollution status and hazard of heavy metal wastewater[J]. Jiangxi Chemical Industry, 2016, 2: 207-208. | |
5 | Jin Z , Zhang Y X , Meng F L , et al . Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(Ⅵ) in the presence of phenol[J]. Journal of Hazardous Materials, 2014, 276: 400-407. |
6 | Zhao X , Huang S , Liu Y , et al . In situ preparation of highly stable polyaniline/W18O49 hybrid nanocomposite as efficient visible light photocatalyst for aqueous Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2018, 353: 466-475. |
7 | Li S , Cai J , Wu X , et al . TiO2@Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr(Ⅵ) and photo-oxidation of benzyl alcohol[J]. Journal of Hazardous Materials, 2018, 346: 52-61. |
8 | Chen H , Shao Y , Xu Z , et al . Effective catalytic reduction of Cr(Ⅵ) over TiO2 nanotube supported Pd catalysts[J]. Applied Catalysis B: Environmental, 2011, 105(3/4): 255-262. |
9 | Nanda B , Pradhan A C , Parida K M . Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2017, 316: 1122-1135. |
10 | Liu J , Huang K , Xie K , et al . An ecological new approach for treating Cr(Ⅵ)-containing industrial wastewater: Photochemical reduction[J]. Water Research, 2016, 93: 187-194. |
11 | Wang Q , Shi X , Liu E , et al . Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2016, 317: 8-16. |
12 | Fujishima A , Honda K . Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37. |
13 | Chen C , Ma W , Zhao J . Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2010, 39(11): 4206-4219. |
14 | 于娜娜, 代岳, 陈珍, 等 . TiO2光催化剂及其改性方法最新研究进展[J]. 化工中间体, 2011, 7(6): 16-20. |
Yu N N , Dai Y , Chen Z , et al . The latest review on modified methods of TiO2 photocatalysis[J]. Chemical Intermediate, 2011, 7(6): 16-20. | |
15 | Zhang G , Yong C Z , Nadagouda M , et al . Visible light-sensitized S, N and C co-doped polymorphic TiO2, for photocatalytic destruction of microcystin-LR[J]. Applied Catalysis B: Environmental, 2014, 144(1): 614-621. |
16 | Cassaignon S , Colbeau-Justin C . Titanium dioxide in photocatalysis[M]// Durupthy O. Nanomaterials: A Danger or a Promise? London: Springer, 2013: 153-188. |
17 | 张凤君, 刘卓婧, 刘兆煐, 等 . TiO2光催化剂改性研究进展[J]. 科技导报, 2013, 31(17): 66-71. |
Zhang F J , Liu Z J , Liu Z Y , et al . Review on the modification of TiO2 photocatalyst[J]. Science & Technology Review, 2013, 31(17): 66-71. | |
18 | Liu X , Hu Q , Fang Z , et al . Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal[J]. Langmuir, 2008, 25(1): 3-8. |
19 | Cai J , Wu X , Li S , et al . Controllable location of Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity[J]. Applied Catalysis B: Environmental, 2017, 201: 12-21. |
20 | Altin I , Sökmen M . Preparation of TiO2-polystyrene photocatalyst from waste material and its usability for removal of various pollutants[J]. Applied Catalysis B: Environmental, 2014, 144: 694-701. |
21 | Kim W , Park J Y , Kim Y . Fabrication of branched-TiO2 microrods on the FTO glass for photocatalytic reduction of Cr (Ⅵ) under visible-light irradiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 73: 248-253. |
22 | Xu L , Yang L , Bai X , et al . Persulfate activation towards organic decomposition and Cr (Ⅵ) reduction achieved by a novel CQDs-TiO2- x /rGO nanocomposite[J]. Chemical Engineering Journal, 2019, 373: 238-250. |
23 | Su J , Zhang Y , Xu S , et al . Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions[J]. Nanoscale, 2014, 6(10): 5181-5192. |
24 | Sun Q , Hu X , Zheng S , et al . Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@ diatomite hybrid photocatalyst for improving reduction of Cr (Ⅵ)[J]. Environmental Pollution, 2019, 245: 53-62. |
25 | Huang Z , Li K , Yan L , et al . Fabrication of bio-based acidic nonmetals co-doped TiO2 with core/shell structure and their unique photocatalytic performance for the rapid reduction of aqueous Cr (Ⅵ) under original pH and visible-light conditions[J]. Applied Catalysis A: General, 2019, 575: 142-151. |
26 | Mishra P M , Naik G K , Nayak A , et al . Facile synthesis of nano-structured magnetite in presence of natural surfactant for enhanced photocatalytic activity for water decomposition and Cr(Ⅵ) reduction[J]. Chemical Engineering Journal, 2016, 299: 227-235. |
27 | Zhao Y , Tao C , Xiao G , et al . Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@ TiO2@ Ag nanocomposites[J]. Nanoscale, 2016, 8(9): 5313-5326. |
28 | 徐义邦, 樊孝俊, 龚娴 . 二苯碳酰二肼分光光度法测定水中六价铬方法的改进[J]. 中国给水排水, 2015(8): 106-108. |
Xu Y B , Fan J X , Gong X . Improvement of method for determination of chromium(Ⅵ) in water by 1, 5-diphenylcarbohydrazide spectrophotometry[J]. China Water&Wastewater, 2015(8): 106-108. | |
29 | Wang Y S , Shen J H , Horng J J . Chromate enhanced visible light driven TiO2 photocatalytic mechanism on Acid Orange 7 photodegradation[J]. Journal of Hazardous Materials, 2014, 274: 420-427. |
30 | 孙雪娇, 王思琦, 董佳, 等 . Ag/NH2-MIL-125(Ti)的构建及可见光还原水中Cr(Ⅵ)[J]. 应用化学, 2019, (3): 314-323. |
Sun X J , Wang S Q , Dong J , et al . Construction of Ag /NH2 -MIL-125(Ti) catalyst for photo-driven reduction of aqueous Cr(Ⅵ) pollutant[J]. Chinese Journal of Applied Chemistry, 2019, (3): 314-323. | |
31 | Das D P , Parida K , De B R . Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation[J]. Journal of Molecular Catalysis A Chemical, 2006, 245(1/2): 217-224. |
32 | 谢继阳, 王红琴, 彭程, 等 . 中空纳米材料功能化及在催化反应中的应用[J]. 化工进展, 2019, 38(8): 3730-3741. |
Xie J Y , Wang H Q , Peng C , et .al. Application of functionalization of hollow nanomaterials in catalytic reactions[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3730-3741. | |
33 | Benjwal P , Kumar M , Chamoli P , et al . Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(Ⅲ) by reduced graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites[J]. RSC Advances, 2015, 5: 73249-73260. |
34 | Roy S , Viswanath B , Hegde M S , et al . Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu)[J]. Journal of Physical Chemistry C, 2008, 112(15): 6002-6012. |
35 | Yamashita T , Hayes P . Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. |
36 | Zhu S R , Liu P F , Wu M K , et al . Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light[J]. Dalton Transactions, 2016, 45(43): 17521-17529. |
[1] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[2] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[3] | DAI Xiaoye, AN Qingsong, XU Yunting, SHI Lin. Review of waste refrigerant destruction methods [J]. CIESC Journal, 2021, 72(S1): 1-6. |
[4] | XIE Qinyin, HUANG Xiaolian, LI Yuan, LI Ling, GE Xuehui, QIU Ting. Design optimization and photocatalytic performance research of TiO2 planar microreactor [J]. CIESC Journal, 2021, 72(7): 3626-3636. |
[5] | Yongqiang DANG,Boni LI,Keke LI,Jianlan ZHANG,Xiangyu FENG,Yating ZHANG. Research progress in photocatalytic reduction of CO2 with iron-based catalysts [J]. CIESC Journal, 2021, 72(10): 5016-5027. |
[6] | REN Jing, TAN Ling, ZHAO Yufei, SONG Yufei. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction [J]. CIESC Journal, 2021, 72(1): 398-424. |
[7] | ZHANG Guping, WANG Beibei, ZHOU Zhou, CHEN Dongyun, LU Jianmei. Research progress of semiconductor materials for photocatalytic low concentration nitrogen oxides [J]. CIESC Journal, 2021, 72(1): 259-275. |
[8] | Meng JIA, Jiabin ZHANG, Yaqing FENG, Bao ZHANG. Application of metal-porphyrin-based frameworks in photocatalysis [J]. CIESC Journal, 2020, 71(9): 4046-4057. |
[9] | Qi ZHOU, Honglei DING, Detong GUO, Weiguo PAN, Wei DU. Recent advances in catalytic methods of CO2 hydrogenation to clean energy [J]. CIESC Journal, 2020, 71(8): 3428-3443. |
[10] | Jingyu HU, Rong YAO, Yuhang PAN, Chao ZHU, Shuang SONG, Yi SHEN. Photo-assisted regeneration of titanium dioxide/layered double hydroxide for removal of organic dyes in water [J]. CIESC Journal, 2020, 71(7): 3296-3303. |
[11] | Yunlong ZHOU, Xiaoyuan YE, Dongyao LIN. Photocatalytic hydrogen evolution by using corn stover as sacrificial agent under UV light irradiation [J]. CIESC Journal, 2019, 70(7): 2717-2726. |
[12] | WANG Yaoqiang, ZHAO Yilin, LI Linghui, SU Haijia. Selective adsorption of Pb2+ by sea urchin magnetic nano-Fe3O4@TiO2 [J]. CIESC Journal, 2018, 69(1): 446-454. |
[13] | Xiaobing, JIN Can, LI Xiaosong, LIU Jinglin, LIU Chenyang, LIU Xiaoyu. Apparent kinetics of photocatalytic oxidation of formaldehyde over Au/TiO2 under LED visible light [J]. CIESC Journal, 2017, 68(S1): 196-203. |
[14] | LIU Fang, FAN Fengtao, LÜ Yucui, ZHANG Shuang, ZHAO Chaocheng. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials [J]. CIESC Journal, 2016, 67(5): 1635-1643. |
[15] | YE Feiyan, MEI Liang, XIAO Jing, XIA Qibin, LI Zhong. UV photocatalysis-assisted adsorptive desulfurization of gasoline using bi-functional Ti-Si-O material [J]. CIESC Journal, 2015, 66(12): 4858-4864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||