1 |
Brotchie A. Graphene quantum dots: it's all in the twist[J]. Nature Reviews Materials, 2016, 1: 16006.
|
2 |
胡超, 穆野, 李明宇, 等. 纳米碳点的制备与应用研究进展[J]. 物理化学学报, 2019, 35(6): 572-590.
|
|
Hu C, Mu Y, Li M Y, et al. Recent advances in the synthesis and applications of carbon dots[J]. Acta Physico-Chimica Sinica, 2019, 35(6): 572-590.
|
3 |
孙墨杰, 赵志海, 陈红梅, 等. 碳量子点的合成研究进展与展望[J]. 化学通报, 2016, 79(8): 691-698.
|
|
Sun M J, Zhao Z H, Chen H M, et al. Research progress and prospective of synthesizing carbon quantum dots[J]. Chemistry, 2016, 79(8): 691-698.
|
4 |
Li Y F, Yuan H Y, von dem Bussche A, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12295-12300.
|
5 |
Chen J L, Zhou G Q, Chen L, et al. Interaction of graphene and its oxide with lipid membrane: a molecular dynamics simulation study[J]. Journal of Physical Chemistry C, 2016, 120(11): 6225-6231.
|
6 |
Lv K, Li Y F. Indentation of graphene-covered atomic force microscopy probe across a lipid bilayer membrane: effect of tip shape, size, and surface hydrophobicity[J]. Langmuir, 2018, 34(26): 7681-7689.
|
7 |
岳华, 马光辉. 基于石墨烯独特生物界面效应的功能化载体研究进展[J]. 化学学报, 2021, 79(10): 1244-1256.
|
|
Yue H, Ma G H. Advances in functionalized carriers based on graphene's unique biological interface effect[J]. Acta Chimica Sinica, 2021, 79(10): 1244-1256.
|
8 |
周梦迪, 沈嘉炜, 梁立军, 等. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165.
|
|
Zhou M D, Shen J W, Liang L J, et al. Advances in computer simulation of graphene biotoxicity[J]. CIESC Journal, 2020, 71(1): 148-165.
|
9 |
张国俊, 付雪峰, 郑企雨, 等. 转型中的中国化学: 基金委化学部十三五规划实施纪行[J]. 中国科学: 化学, 2020, 50(6): 681-686.
|
|
Zhang G J, Fu X F, Zheng Q Y, et al. Chemical sciences transformation in China—review of the 13th Five-Year Plan of Department of Chemical Sciences, NSFC[J]. Scientia Sinica Chimica, 2020, 50(6): 681-686.
|
10 |
Faria M, Björnmalm M, Thurecht K J, et al. Minimum information reporting in bio-nano experimental literature[J]. Nature Nanotechnology, 2018, 13(9): 777-785.
|
11 |
Zhu G L, Xu Z Y, Yan L T. Entropy at bio-nano interfaces[J]. Nano Letters, 2020, 20(8): 5616-5624.
|
12 |
Wang Y L, Cai R, Chen C Y. The nano-bio interactions of nanomedicines: understanding the biochemical driving forces and redox reactions[J]. Accounts of Chemical Research, 2019, 52(6): 1507-1518.
|
13 |
陆小华, 董依慧, 安蓉, 等. 复杂流体-固体界面相互作用热力学机制[J]. 化工学报, 2019, 70(10): 3677-3689.
|
|
Lu X H, Dong Y H, An R, et al. Thermodynamic mechanism of complex fluids-solids interfacial interaction[J]. CIESC Journal, 2019, 70(10): 3677-3689.
|
14 |
朱宇, 陆小华, 丁皓, 等. 分子模拟在化工应用中的若干问题及思考[J]. 化工学报, 2004, 55(8): 1213-1223.
|
|
Zhu Y, Lu X H, Ding H, et al. Molecular simulation in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8): 1213-1223.
|
15 |
赵道辉, 彭春望, 廖晨伊, 等. 面向生物能源的酶固定化的计算机模拟[J]. 化工学报, 2014, 65(5): 1828-1834.
|
|
Zhao D H, Peng C W, Liao C Y, et al. Computer simulation of bioenergy-oriented enzyme immobilization[J]. CIESC Journal, 2014, 65(5): 1828-1834.
|
16 |
李嘉辰, 俞斌, 王琦, 等. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360.
|
|
Li J C, Yu B, Wang Q, et al. Molecular simulation on doxorubicin encapsulation and transport by chitosanboron nitride nanotubes[J]. CIESC Journal, 2020, 71(1): 354-360.
|
17 |
陆小华, 陈义峰, 董依慧, 等. 纳微界面增强CO2吸收及机理分析[J]. 化工学报, 2020, 71(1): 34-42.
|
|
Lu X H, Chen Y F, Dong Y H, et al. Nano-interface enhanced CO2 absorption and mechanism analysis[J]. CIESC Journal, 2020, 71(1): 34-42.
|
18 |
陆小华, 蒋管聪, 朱育丹, 等. 受限界面处流体分子行为的调控及相关分子热力学模型初探: 基于高比表面氧化钛的研究进展[J]. 化工学报, 2018, 69(1): 1-8.
|
|
Lu X H, Jiang G C, Zhu Y D, et al. Preliminary study on controlling nanoconfined fluid behavior and modelling molecular thermodynamics: progress in development of high-specific surface area TiO2 [J]. CIESC Journal, 2018, 69(1): 1-8.
|
19 |
Chen P Y, Yue H, Zhai X B, et al. Transport of a graphene nanosheet sandwiched inside cell membranes[J]. Science Advances, 2019, 5(6): eaaw3192.
|
20 |
Song X Y, Ma J L, Long T, et al. Mechanochemical cellular membrane internalization of nanohydrogels: a large-scale mesoscopic simulation[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 123-134.
|
21 |
Liang L J, Kong Z, Kang Z Z, et al. Theoretical evaluation on potential cytotoxicity of graphene quantum dots[J]. ACS Biomaterials Science & Engineering, 2016, 2(11): 1983-1991.
|
22 |
Xue Z Y, Sun Q, Zhang L, et al. Graphene quantum dot assisted translocation of drugs into a cell membrane[J]. Nanoscale, 2019, 11(10): 4503-4514.
|
23 |
Dallavalle M, Bottoni A, Calvaresi M, et al. Functionalization pattern of graphene oxide sheets controls entry or produces lipid turmoil in phospholipid membranes[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15487-15493.
|
24 |
Zhang Z J, Qin J L, Diao H L, et al. Janus-like asymmetrically oxidized graphene: facile synthesis and distinct liquid crystal alignment at the oil/water interface[J]. Carbon, 2020, 161: 316-322.
|
25 |
Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.
|
26 |
Dodda L S, Cabeza de Vaca I, Tirado-Rives J, et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands[J]. Nucleic Acids Research, 2017, 45(W1): W331-W336.
|
27 |
Yabe M, Mori K, Ueda K, et al. Development of PolyParGen software to facilitate the determination of molecular dynamics simulation parameters for polymers[J]. Journal of Computer Chemistry, Japan -International Edition, 2019, 5: 2018-0034.
|
28 |
Li X, Hede T, Tu Y Q, et al. Surface-active cis-pinonic acid in atmospheric droplets: a molecular dynamics study[J]. Journal of Physical Chemistry Letters, 2010, 1(4): 769-773.
|
29 |
Tang H, Zhao Y, Shan S J, et al. Wrinkle- and edge-adsorption of aromatic compounds on graphene oxide as revealed by atomic force microscopy, molecular dynamics simulation, and density functional theory[J]. Environmental Science & Technology, 2018, 52(14): 7689-7697.
|
30 |
Song X Y, Guo H, Tao J B, et al. Encapsulation of single-walled carbon nanotubes with asymmetric pyrenyl-gemini surfactants[J]. Chemical Engineering Science, 2018, 187: 406-414.
|
31 |
Chen Y, Xie B Q, Ren Y T, et al. Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups[J]. Nanoscale Research Letters, 2014, 9(1): 646.
|
32 |
Zhang Q, Gao Y Y, Xu Z L, et al. The effects of oxygen functional groups on graphene oxide on the efficient adsorption of radioactive iodine[J]. Materials (Basel, Switzerland), 2020, 13(24): 5770.
|
33 |
Duan X L, Song X Y, Shi R F, et al. A theoretical perspective on the structure and thermodynamics of secondary organic aerosols from toluene: molecular hierarchical synergistic effects[J]. Environmental Science: Nano, 2022, 9(3): 1052-1063.
|