CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4227-4238.DOI: 10.11949/0438-1157.20201667
• Process system engineering • Previous Articles Next Articles
Jinyu GUO(),Wentao LI,Yuan LI()
Received:
2020-11-18
Revised:
2021-05-30
Online:
2021-08-05
Published:
2021-08-05
Contact:
Yuan LI
通讯作者:
李元
作者简介:
郭金玉(1975—),女,博士,副教授,基金资助:
CLC Number:
Jinyu GUO, Wentao LI, Yuan LI. Application of adaptive algorithm of online reduced KECA in fault detection[J]. CIESC Journal, 2021, 72(8): 4227-4238.
郭金玉, 李文涛, 李元. 在线压缩KECA的自适应算法在故障检测中的应用[J]. 化工学报, 2021, 72(8): 4227-4238.
Add to citation manager EndNote|Ris|BibTeX
故障类型 | ET/s | ||
---|---|---|---|
KECA | RKECA | ORKECA | |
故障1 | 0.0374 | 0.0101 | 0.0240 |
故障2 | 0.0311 | 0.0173 | 0.0301 |
Table 1 Elapsed time of KECA,RKECA and ORKECA for numerical examples
故障类型 | ET/s | ||
---|---|---|---|
KECA | RKECA | ORKECA | |
故障1 | 0.0374 | 0.0101 | 0.0240 |
故障2 | 0.0311 | 0.0173 | 0.0301 |
故障 类型 | 检测 指标 | KPCA | MWKPCA | KECA | RKECA | ORKECA |
---|---|---|---|---|---|---|
故障1 | FAR/% FDR/% | 6.67 96.29 | 1.00 98.67 | 2.71 92.57 | 1.67 95.75 | 0 99.85 |
故障2 | FAR/% FDR/% | 6.50 97.67 | 0.67 95.71 | 1.50 93.46 | 3.00 95.37 | 0.30 99.50 |
Tab 2 False alarm rates and fault detection rates for numerical example
故障 类型 | 检测 指标 | KPCA | MWKPCA | KECA | RKECA | ORKECA |
---|---|---|---|---|---|---|
故障1 | FAR/% FDR/% | 6.67 96.29 | 1.00 98.67 | 2.71 92.57 | 1.67 95.75 | 0 99.85 |
故障2 | FAR/% FDR/% | 6.50 97.67 | 0.67 95.71 | 1.50 93.46 | 3.00 95.37 | 0.30 99.50 |
故障类型 | ET/s | ||
---|---|---|---|
KECA | RKECA | ORKECA | |
故障2 | 0.0214 | 0.0109 | 0.0197 |
故障17 | 0.0185 | 0.0093 | 0.0133 |
Table 3 Elapsed time(ET) of KECA, RKECA and ORKECA in TE process
故障类型 | ET/s | ||
---|---|---|---|
KECA | RKECA | ORKECA | |
故障2 | 0.0214 | 0.0109 | 0.0197 |
故障17 | 0.0185 | 0.0093 | 0.0133 |
故障 类型 | KPCA | MWKPCA | KECA | RKECA | ORKECA | |||||
---|---|---|---|---|---|---|---|---|---|---|
FAR/% | FDR/% | FAR/% | FDR/% | FAR/% | FDR/% | FAR/% | FDR/% | FAR/% | FDR/% | |
1 | 5.63 | 99.50 | 1.25 | 99.75 | 6.25 | 99.79 | 12.50 | 99.79 | 0 | 99.88 |
2 | 3.75 | 98.63 | 5.00 | 98.12 | 4.37 | 98.85 | 12.63 | 98.96 | 2.25 | 99.38 |
4 | 8.75 | 88.00 | 5.00 | 92.88 | 6.25 | 93.00 | 9.85 | 94.13 | 5.50 | 96.25 |
5 | 8.75 | 30.88 | 1.25 | 63.25 | 6.26 | 39.79 | 7.87 | 57.61 | 1.25 | 72.55 |
6 | 2.50 | 99.25 | 6.25 | 99.75 | 3.13 | 99.65 | 9.50 | 98.16 | 1.25 | 99.75 |
7 | 1.88 | 100.00 | 1.25 | 100 | 0.63 | 100.00 | 5.75 | 99.89 | 0.30 | 100.00 |
8 | 8.13 | 97.50 | 3.13 | 97.13 | 8.13 | 98.00 | 13.50 | 99.58 | 2.50 | 100.00 |
10 | 3.13 | 34.38 | 4.26 | 57.37 | 2.50 | 43.50 | 14.63 | 76.88 | 3.38 | 74.88 |
11 | 5.63 | 65.38 | 6.25 | 74.00 | 4.33 | 72.6 | 15.50 | 84.30 | 5.00 | 90.50 |
12 | 4.38 | 96.88 | 1.88 | 98.13 | 3.75 | 96.35 | 10.25 | 98.85 | 4.63 | 99.63 |
13 | 1.88 | 95.88 | 9.18 | 99.88 | 1.25 | 96.56 | 8.75 | 98.02 | 1.88 | 100.00 |
14 | 3.13 | 100 | 10.50 | 100.00 | 5.00 | 100.00 | 7.13 | 100.00 | 2.50 | 100.00 |
16 | 5.00 | 24.25 | 12.25 | 40.25 | 5.63 | 34.79 | 8.60 | 36.50 | 6.50 | 52.63 |
17 | 5.63 | 86.88 | 0.63 | 87.50 | 3.75 | 89.06 | 8.75 | 91.98 | 1.87 | 97.00 |
18 | 4.35 | 90.75 | 2.50 | 93.38 | 5.63 | 92.35 | 11.25 | 93.54 | 3.25 | 95.00 |
19 | 2.50 | 26.00 | 5.25 | 42.13 | 3.75 | 33.75 | 13.30 | 40.10 | 7.00 | 48.50 |
20 | 1.88 | 45.25 | 1.88 | 40.88 | 1.25 | 54.95 | 6.13 | 60.97 | 0.50 | 59.75 |
21 | 6.88 | 46.88 | 12.13 | 66.75 | 5.63 | 57.00 | 11.88 | 59.97 | 8.25 | 62.25 |
Table 4 False alarm rates and fault detection rates of 18 faults in TE process
故障 类型 | KPCA | MWKPCA | KECA | RKECA | ORKECA | |||||
---|---|---|---|---|---|---|---|---|---|---|
FAR/% | FDR/% | FAR/% | FDR/% | FAR/% | FDR/% | FAR/% | FDR/% | FAR/% | FDR/% | |
1 | 5.63 | 99.50 | 1.25 | 99.75 | 6.25 | 99.79 | 12.50 | 99.79 | 0 | 99.88 |
2 | 3.75 | 98.63 | 5.00 | 98.12 | 4.37 | 98.85 | 12.63 | 98.96 | 2.25 | 99.38 |
4 | 8.75 | 88.00 | 5.00 | 92.88 | 6.25 | 93.00 | 9.85 | 94.13 | 5.50 | 96.25 |
5 | 8.75 | 30.88 | 1.25 | 63.25 | 6.26 | 39.79 | 7.87 | 57.61 | 1.25 | 72.55 |
6 | 2.50 | 99.25 | 6.25 | 99.75 | 3.13 | 99.65 | 9.50 | 98.16 | 1.25 | 99.75 |
7 | 1.88 | 100.00 | 1.25 | 100 | 0.63 | 100.00 | 5.75 | 99.89 | 0.30 | 100.00 |
8 | 8.13 | 97.50 | 3.13 | 97.13 | 8.13 | 98.00 | 13.50 | 99.58 | 2.50 | 100.00 |
10 | 3.13 | 34.38 | 4.26 | 57.37 | 2.50 | 43.50 | 14.63 | 76.88 | 3.38 | 74.88 |
11 | 5.63 | 65.38 | 6.25 | 74.00 | 4.33 | 72.6 | 15.50 | 84.30 | 5.00 | 90.50 |
12 | 4.38 | 96.88 | 1.88 | 98.13 | 3.75 | 96.35 | 10.25 | 98.85 | 4.63 | 99.63 |
13 | 1.88 | 95.88 | 9.18 | 99.88 | 1.25 | 96.56 | 8.75 | 98.02 | 1.88 | 100.00 |
14 | 3.13 | 100 | 10.50 | 100.00 | 5.00 | 100.00 | 7.13 | 100.00 | 2.50 | 100.00 |
16 | 5.00 | 24.25 | 12.25 | 40.25 | 5.63 | 34.79 | 8.60 | 36.50 | 6.50 | 52.63 |
17 | 5.63 | 86.88 | 0.63 | 87.50 | 3.75 | 89.06 | 8.75 | 91.98 | 1.87 | 97.00 |
18 | 4.35 | 90.75 | 2.50 | 93.38 | 5.63 | 92.35 | 11.25 | 93.54 | 3.25 | 95.00 |
19 | 2.50 | 26.00 | 5.25 | 42.13 | 3.75 | 33.75 | 13.30 | 40.10 | 7.00 | 48.50 |
20 | 1.88 | 45.25 | 1.88 | 40.88 | 1.25 | 54.95 | 6.13 | 60.97 | 0.50 | 59.75 |
21 | 6.88 | 46.88 | 12.13 | 66.75 | 5.63 | 57.00 | 11.88 | 59.97 | 8.25 | 62.25 |
1 | Amar M, Gondal I, Wilson C. Vibration spectrum imaging: a novel bearing fault classification approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 494-502. |
2 | 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9, 16. |
Li H, Xiao D Y. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-9, 16. | |
3 | 康德礼, 李秀喜. 核熵成分分析算法及其在化工过程监控中的应用研究[J]. 计算机与应用化学, 2013, 30(8): 855-858. |
Kang D L, Li X X. Chemical process monitoring using kernel entropy component[J]. Computers and Applied Chemistry, 2013, 30(8): 855-858. | |
4 | Qin S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220-234. |
5 | Liu Y H, Sun R, Jin S. A survey on data-driven process monitoring and diagnostic methods for variation reduction in multi-station assembly systems[J]. Assembly Automation, 2019, 39(4): 727-739. |
6 | Yin S, Ding S X, Xie X C, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6418-6428. |
7 | 尚宇炜, 马钊, 彭晨阳, 等. 内嵌专业知识和经验的机器学习方法探索(一): 引导学习的提出与理论基础[J]. 中国电机工程学报, 2017, 37(19): 5560-5571, 5833. |
Shang Y W, Ma Z, Peng C Y, et al. Study of a novel machine learning method embedding expertise(Ⅰ): Proposals and fundamentals of guiding learning[J]. Proceedings of the CSEE, 2017, 37(19): 5560-5571, 5833. | |
8 | Xiong L, Liang J, Qian J X. Multivariate statistical process monitoring of an industrial polypropylene catalyzer reactor with component analysis and kernel density estimation[J]. Chinese Journal of Chemical Engineering, 2007, 15(4): 524-532. |
9 | Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95-114. |
10 | Wang J, He Q P. Multivariate statistical process monitoring based on statistics pattern analysis[J]. Industrial & Engineering Chemistry Research, 2010, 49(17): 7858-7869. |
11 | Zhu J L, Ge Z Q, Song Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1877-1885. |
12 | 冯立伟, 张成, 李元, 等. 基于双近邻标准化和PCA的多阶段过程故障检测[J]. 化工学报, 2018, 69(7): 3159-3166. |
Feng L W, Zhang C, Li Y, et al. DLNS-PCA-based fault detection for multimode batch process[J]. CIESC Journal, 2018, 69(7): 3159-3166. | |
13 | Russell E L, Chiang L H, Braatz R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 81-93. |
14 | Lee C, Choi S W, Lee I B. Variable reconstruction and sensor fault identification using canonical variate analysis[J]. Journal of Process Control, 2006, 16(7): 747-761. |
15 | Lee J M, Yoo C, Lee I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485. |
16 | 刘舒锐, 彭慧, 李帅, 等. 基于IJB-PCA-ICA算法的故障检测[J]. 化工学报, 2018, 69(12): 5146-5154. |
Liu S R, Peng H, Li S, et al. Fault detection based on IJB-PCA-ICA[J]. CIESC Journal, 2018, 69(12): 5146-5154. | |
17 | Cho J H, Lee J M, Wook Choi S, et al. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 60(1): 279-288. |
18 | Zhao C H, Gao F R, Wang F L. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)[J]. Industrial & Engineering Chemistry Research, 2009, 48(20): 9163-9174. |
19 | 韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6): 2139-2149. |
Han M, Zhang Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2015, 66(6): 2139-2149. | |
20 | Zhang Y W, Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS[J]. Chemical Engineering Science, 2011, 66(1): 64-72. |
21 | Chen J Y, Yu J. Independent component analysis mixture model based dissimilarity method for performance monitoring of non-Gaussian dynamic processes with shifting operating conditions[J]. Industrial & Engineering Chemistry Research, 2014, 53(13): 5055-5066. |
22 | Jenssen R. Kernel entropy component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 847-860. |
23 | Jiang Q C, Yan X F, Lv Z, et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6): 1181-1186. |
24 | Gómez-Chova L, Jenssen R, Camps-Valls G. Kernel entropy component analysis for remote sensing image clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 312-316. |
25 | Jaffel I, Taouali O, Harkat M F, et al. Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9/10/11/12): 3265-3279. |
26 | Binol H. Ensemble learning based multiple kernel principal component analysis for dimensionality reduction and classification of hyperspectral imagery[J]. Mathematical Problems in Engineering, 2018, 2018: 1-14. |
27 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
28 | 文莹, 闫雅慧. 基于自适应核主元分析的航空发动机异常监测[J]. 兵工自动化, 2016, 35(8): 1-4, 8. |
Wen Y, Yan Y H. Aero engine anomaly monitoring based on self-adaptive kernel principal component analysis[J]. Ordnance Industry Automation, 2016, 35(8): 1-4, 8. | |
29 | Lee J M, Yoo C, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. |
30 | Tracy N D, Young J C, Mason R L. Multivariate control charts for individual observations[J]. Journal of Quality Technology, 1992, 24(2): 88-95. |
31 | Sullivan J H, Woodall W H. A comparison of multivariate control charts for individual observations[J]. Journal of Quality Technology, 1996, 28(4): 398-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||