CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4639-4648.DOI: 10.11949/0438-1157.20201896
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yanhong WANG1(),Yingnan LU1,Sufen LI2,Ming DONG2
Received:
2020-12-23
Revised:
2021-06-16
Online:
2021-09-05
Published:
2021-09-05
Contact:
Yanhong WANG
通讯作者:
王彦红
作者简介:
王彦红(1983—),男,博士,讲师,基金资助:
CLC Number:
Yanhong WANG, Yingnan LU, Sufen LI, Ming DONG. Numerical study on heat transfer of supercritical-pressure RP-3 aviation kerosene in U-turn circular tubes[J]. CIESC Journal, 2021, 72(9): 4639-4648.
王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648.
Add to citation manager EndNote|Ris|BibTeX
Grids | Tout/K | uout/(m·s-1) |
---|---|---|
3200×800 | 674.08 | 6.25 |
3200×1200 | 677.17 | 6.55 |
3200×1800 | 677.28 | 6.56 |
2180×1200 | 675.09 | 6.34 |
4150×1200 | 677.22 | 6.56 |
Table 1 Grid-independence analysis
Grids | Tout/K | uout/(m·s-1) |
---|---|---|
3200×800 | 674.08 | 6.25 |
3200×1200 | 677.17 | 6.55 |
3200×1800 | 677.28 | 6.56 |
2180×1200 | 675.09 | 6.34 |
4150×1200 | 677.22 | 6.56 |
1 | Deng H W, Zhu K, Xu G Q, et al. Heat transfer characteristics of RP-3 kerosene at supercritical pressure in a vertical circular tube[J]. Journal of Enhanced Heat Transfer, 2012, 19(5): 409-421. |
2 | Zhang C B, Xu G Q, Deng H W, et al. Investigation of flow resistance characteristics of endothermic hydrocarbon fuel under supercritical pressures[J]. Propulsion and Power Research, 2013, 2(2): 119-130. |
3 | Zhu K, Xu G Q, Tao Z, et al. Flow frictional resistance characteristics of kerosene RP-3 in horizontal circular tube at supercritical pressure[J]. Experimental Thermal and Fluid Science, 2013, 44: 245-252. |
4 | Wang H, Zhou J, Pan Y, et al. Experimental investigation on the characteristics of thermo-acoustic instability in hydrocarbon fuel at supercritical pressures[J]. Acta Astronautica, 2016, 121: 29-38. |
5 | Li S F, Wang Y N, Dong M, et al. Experimental investigation on flow and heat transfer instabilities of RP-3 aviation kerosene in a vertical miniature tube under supercritical pressures[J]. Applied Thermal Engineering, 2019, 149: 73-84. |
6 | Li X F, Zhong F Q, Fan X J, et al. Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure[J]. Applied Thermal Engineering, 2010, 30(13): 1845-1851. |
7 | Zhang C B, Xu G Q, Gao L, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. The Journal of Supercritical Fluids, 2012, 72: 90-99. |
8 | Fu Y C, Huang H R, Wen J, et al. Experimental investigation on convective heat transfer of supercritical RP-3 in vertical miniature tubes with various diameters[J]. International Journal of Heat and Mass Transfer, 2017, 112: 814-824. |
9 | Liu B, Zhu Y H, Yan J J, et al. Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes[J]. International Journal of Heat and Mass Transfer, 2015, 91: 734-746. |
10 | Wang Y H, Lu Y N, Li S F, et al. Numerical study on non-uniform heat transfer deterioration of supercritical RP-3 aviation kerosene in a horizontal tube[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1542-1557. |
11 | Huang D, Ruan B, Wu X Y, et al. Experimental study on heat transfer of aviation kerosene in a vertical upward tube at supercritical pressures[J]. Chinese Journal of Chemical Engineering, 2015, 23(2): 425-434. |
12 | Huang D, Li W. Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 111: 266-278. |
13 | Wen J, Huang H R, Jia Z X, et al. Buoyancy effects on heat transfer to supercritical pressure hydrocarbon fuel in a horizontal miniature tube[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1173-1181. |
14 | Cheng Z Y, Tao Z, Zhu J Q, et al. Diameter effect on the heat transfer of supercritical hydrocarbon fuel in horizontal tubes under turbulent conditions[J]. Applied Thermal Engineering, 2018, 134: 39-53. |
15 | Sun X, Xu K K, Meng H, et al. Buoyancy effects on supercritical-pressure conjugate heat transfer of aviation kerosene in horizontal tubes[J]. The Journal of Supercritical Fluids, 2018, 139: 105-113. |
16 | Lv L, Wen J, Fu Y C, et al. Numerical investigation on convective heat transfer of supercritical aviation kerosene in a horizontal tube under hyper gravity conditions[J]. Aerospace Science and Technology, 2020, 105: 105962. |
17 | Sun X, Meng H, Zheng Y. Asymmetric heating and buoyancy effects on heat transfer of hydrocarbon fuel in a horizontal square channel at supercritical pressures[J]. Aerospace Science and Technology, 2019, 93: 105358. |
18 | Hu J Y, Zhou J, Wang N, et al. Numerical study of buoyancy's effect on flow and heat transfer of kerosene in a tiny horizontal square tube at supercritical pressure[J]. Applied Thermal Engineering, 2018, 141: 1070-1079. |
19 | Wen J, Huang H R, Fu Y C, et al. Heat transfer performance of aviation kerosene RP-3 flowing in a vertical helical tube at supercritical pressure[J]. Applied Thermal Engineering, 2017, 121: 853-862. |
20 | Fu Y C, Wen J, Tao Z, et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes[J]. Applied Thermal Engineering, 2017, 116: 43-55. |
21 | 邓冬, 汪荣顺. 液氮通过受热U形管传热特性的数值模拟[J]. 上海交通大学学报, 2013, 47(8): 1292-1299. |
Deng D, Wang R S. Numerical simulation of heat transfer of liquid nitrogen through heated U-tubes[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1292-1299. | |
22 | 黄文, 邓宏武, 徐国强, 等. U形管内超临界压力航空煤油压降特性[J]. 航空动力学报, 2011, 26(3): 582-587. |
Huang W, Deng H W, Xu G Q, et al. Pressure drop characteristics of supercritical aviation kerosene in U-turn tube[J]. Journal of Aerospace Power, 2011, 26(3): 582-587. | |
23 | Zhang C B, Tao Z, Xu G Q, et al. Heat transfer investigation of the sub- and supercritical fuel flow through a U-turn tube[C]//Proceedings of International Symposium on Heat Transfer in Gas Turbine Systems. New York: Begellhouse, 2009: 1-13. |
24 | Wang X C, Xiang M J, Huo H J, et al. Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J]. Applied Thermal Engineering, 2018, 141: 775-787. |
25 | Gao Z G, Bai J H. Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube[J]. Applied Thermal Engineering, 2017, 120: 10-18. |
26 | Wang Y H, Li S F, Dong M. Experimental investigation on heat transfer deterioration and thermo-acoustic instability of supercritical-pressure aviation kerosene within a vertical upward circular tube[J]. Applied Thermal Engineering, 2019, 157: 113707. |
27 | Deng H W, Zhang C B, Xu G Q, et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2980-2986. |
28 | Deng H W, Zhu K, Xu G Q, et al. Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 263-268. |
29 | Deng H W, Zhang C B, Xu G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365. |
30 | 程泽源, 朱剑琴, 金钊. 吸热型碳氢燃料RP-3替代模型研究[J]. 航空动力学报, 2016, 31(2): 391-398. |
Cheng Z Y, Zhu J Q, Jin Z. Study on surrogate model of endothermic hydrocarbon fuel RP-3[J]. Journal of Aerospace Power, 2016, 31(2): 391-398. | |
31 | 王彦红, 李素芬. 超临界压力下航空煤油传热恶化判别准则[J]. 推进技术, 2019, 40(11): 2528-2536. |
Wang Y H, Li S F. Criterion for heat transfer deterioration of aviation kerosene under supercritical pressures[J]. Journal of Propulsion Technology, 2019, 40(11): 2528-2536. | |
32 | 张羽楠. 超临界甲烷在U形管内换热特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2020. |
Zhang Y N. Heat transfer characteristics of supercritical methane in U-type tube[D]. Harbin: Harbin University of Science and Technology, 2020. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||