CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 3997-4008.DOI: 10.11949/0438-1157.20201933
• Thermodynamics • Previous Articles Next Articles
Shengzheng GUO1(),Songgu WU1(),Xin SU1,Wei GAO2,Zhiping NIU2,Junbo GONG1
Received:
2020-12-29
Revised:
2021-04-16
Online:
2021-08-05
Published:
2021-08-05
Contact:
Songgu WU
郭盛争1(),吴送姑1(),苏鑫1,高伟2,牛志平2,龚俊波1
通讯作者:
吴送姑
作者简介:
郭盛争(1994—),男,硕士研究生,基金资助:
CLC Number:
Shengzheng GUO, Songgu WU, Xin SU, Wei GAO, Zhiping NIU, Junbo GONG. Determination of solubility and metastable zone width of rebaudioside A and study on its crystallization process[J]. CIESC Journal, 2021, 72(8): 3997-4008.
郭盛争, 吴送姑, 苏鑫, 高伟, 牛志平, 龚俊波. 莱鲍迪苷A溶解度与介稳区宽度的测定及其结晶过程研究[J]. 化工学报, 2021, 72(8): 3997-4008.
Add to citation manager EndNote|Ris|BibTeX
药品名称 | 质量分数 | 摩尔质量/ (g·mol-1) | 来源 |
---|---|---|---|
莱鲍迪苷A | ≥0.980 | 967.01 | 晨光生物科技股份有限公司 |
甲醇 | ≥0.998 | 32.04 | 天津市康科德科技有限公司 |
乙醇 | ≥0.997 | 46.07 | 天津市康科德科技有限公司 |
正丙醇 | ≥0.995 | 60.1 | 天津市康科德科技有限公司 |
丙酮 | ≥0.995 | 58.08 | 天津福晨化学试剂有限公司 |
去离子水 | ≥0.995 | 18.02 | 实验室自制 |
Table 1 The list of chemicals
药品名称 | 质量分数 | 摩尔质量/ (g·mol-1) | 来源 |
---|---|---|---|
莱鲍迪苷A | ≥0.980 | 967.01 | 晨光生物科技股份有限公司 |
甲醇 | ≥0.998 | 32.04 | 天津市康科德科技有限公司 |
乙醇 | ≥0.997 | 46.07 | 天津市康科德科技有限公司 |
正丙醇 | ≥0.995 | 60.1 | 天津市康科德科技有限公司 |
丙酮 | ≥0.995 | 58.08 | 天津福晨化学试剂有限公司 |
去离子水 | ≥0.995 | 18.02 | 实验室自制 |
仪器名称 | 型号/规格 | 生产厂家 |
---|---|---|
分析天平 | AL204 | 瑞士Mettler-Toledo公司 |
水浴恒温槽 | CF41 | 优莱博仪器有限公司 |
夹套结晶器 | 200 ml | 天津易普佳玻璃仪器有限 公司 |
数显机械搅拌 | ZNCL-BS140 | 天津星科仪器有限公司 |
Pixact在线颗粒成像系统 | PCM | 北京海菲尔格科技有限公司 |
激光发射仪 | JDW3-200 | 北京大学物理系 |
激光测量仪 | JG2 | 北京大学物理系 |
Table 2 The list of experimental facilities
仪器名称 | 型号/规格 | 生产厂家 |
---|---|---|
分析天平 | AL204 | 瑞士Mettler-Toledo公司 |
水浴恒温槽 | CF41 | 优莱博仪器有限公司 |
夹套结晶器 | 200 ml | 天津易普佳玻璃仪器有限 公司 |
数显机械搅拌 | ZNCL-BS140 | 天津星科仪器有限公司 |
Pixact在线颗粒成像系统 | PCM | 北京海菲尔格科技有限公司 |
激光发射仪 | JDW3-200 | 北京大学物理系 |
激光测量仪 | JG2 | 北京大学物理系 |
Solvents | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
283.15 K | 288.15 K | 293.15 K | 298.15 K | 303.15 K | 308.15 K | 313.15 K | 318.15 K | 323.15 K | 328.15 K | |
methanol-water | ||||||||||
xa= 0.4① | 0.312 | 0.450 | 0.597 | 0.861 | 1.151 | 1.483 | 1.938 | 2.653 | 3.731 | 4.793 |
xa = 0.5 | 0.279 | 0.392 | 0.496 | 0.655 | 0.886 | 1.196 | 1.555 | 2.175 | 2.915 | 3.805 |
xa = 0.6 | 0.229 | 0.306 | 0.417 | 0.561 | 0.756 | 0.993 | 1.272 | 1.632 | 2.270 | 2.772 |
xa = 0.7 | 0.203 | 0.263 | 0.344 | 0.446 | 0.580 | 0.723 | 0.934 | 1.189 | 1.461 | 1.810 |
ethanol-water | ||||||||||
xb = 0.5 | 1.868 | 2.239 | 2.640 | 2.962 | 3.556 | 4.117 | 4.772 | 5.474 | 6.271 | 7.154 |
xb = 0.6 | 1.338 | 1.573 | 1.822 | 2.020 | 2.378 | 2.711 | 3.094 | 3.498 | 3.950 | 4.444 |
xb = 0.7 | 0.638 | 0.751 | 0.891 | 1.051 | 1.253 | 1.463 | 1.661 | 1.955 | 2.230 | 2.555 |
n-propanol-water | ||||||||||
xc = 0.4 | 1.931 | 2.296 | 2.756 | 3.287 | 3.867 | 4.574 | 5.425 | 6.392 | 7.330 | 8.475 |
xc = 0.5 | 0.945 | 1.147 | 1.407 | 1.713 | 2.149 | 2.472 | 2.974 | 3.452 | 4.194 | 5.090 |
xc = 0.6 | 0.471 | 0.555 | 0.650 | 0.804 | 1.002 | 1.237 | 1.430 | 1.773 | 2.091 | 2.591 |
acetone-water | ||||||||||
xd = 0.3 | 0.344 | 0.463 | 0.619 | 0.820 | 1.073 | 1.340 | 1.819 | 2.294 | 2.909 | 3.663 |
xd = 0.4 | 0.240 | 0.319 | 0.420 | 0.583 | 0.671 | 0.875 | 1.119 | 1.406 | 1.792 | 2.182 |
xd = 0.6 | 0.036 | 0.053 | 0.078 | 0.123 | 0.157 | 0.222 | 0.299 | 0.416 | 0.618 | 0.766 |
Table 3 Experimental solubility x1exp of rebaudioside A in different binary mixed solvents at different temperatures (P = 0.1 MPa)
Solvents | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
283.15 K | 288.15 K | 293.15 K | 298.15 K | 303.15 K | 308.15 K | 313.15 K | 318.15 K | 323.15 K | 328.15 K | |
methanol-water | ||||||||||
xa= 0.4① | 0.312 | 0.450 | 0.597 | 0.861 | 1.151 | 1.483 | 1.938 | 2.653 | 3.731 | 4.793 |
xa = 0.5 | 0.279 | 0.392 | 0.496 | 0.655 | 0.886 | 1.196 | 1.555 | 2.175 | 2.915 | 3.805 |
xa = 0.6 | 0.229 | 0.306 | 0.417 | 0.561 | 0.756 | 0.993 | 1.272 | 1.632 | 2.270 | 2.772 |
xa = 0.7 | 0.203 | 0.263 | 0.344 | 0.446 | 0.580 | 0.723 | 0.934 | 1.189 | 1.461 | 1.810 |
ethanol-water | ||||||||||
xb = 0.5 | 1.868 | 2.239 | 2.640 | 2.962 | 3.556 | 4.117 | 4.772 | 5.474 | 6.271 | 7.154 |
xb = 0.6 | 1.338 | 1.573 | 1.822 | 2.020 | 2.378 | 2.711 | 3.094 | 3.498 | 3.950 | 4.444 |
xb = 0.7 | 0.638 | 0.751 | 0.891 | 1.051 | 1.253 | 1.463 | 1.661 | 1.955 | 2.230 | 2.555 |
n-propanol-water | ||||||||||
xc = 0.4 | 1.931 | 2.296 | 2.756 | 3.287 | 3.867 | 4.574 | 5.425 | 6.392 | 7.330 | 8.475 |
xc = 0.5 | 0.945 | 1.147 | 1.407 | 1.713 | 2.149 | 2.472 | 2.974 | 3.452 | 4.194 | 5.090 |
xc = 0.6 | 0.471 | 0.555 | 0.650 | 0.804 | 1.002 | 1.237 | 1.430 | 1.773 | 2.091 | 2.591 |
acetone-water | ||||||||||
xd = 0.3 | 0.344 | 0.463 | 0.619 | 0.820 | 1.073 | 1.340 | 1.819 | 2.294 | 2.909 | 3.663 |
xd = 0.4 | 0.240 | 0.319 | 0.420 | 0.583 | 0.671 | 0.875 | 1.119 | 1.406 | 1.792 | 2.182 |
xd = 0.6 | 0.036 | 0.053 | 0.078 | 0.123 | 0.157 | 0.222 | 0.299 | 0.416 | 0.618 | 0.766 |
x | V2/(cm3·mol-1) | Δg12/ (J·mol-1) | Δg21/ (J·mol-1) | RMSD | R2 |
---|---|---|---|---|---|
xa =0.4 | 27.52 | -7803 | 7105 | 6.74×10-5 | 0.9984 |
xa =0.5 | 29.79 | -7820 | 7533 | 6.70×10-5 | 0.9966 |
xa =0.6 | 32.01 | -7833 | 8181 | 3.54×10-5 | 0.9993 |
xa =0.7 | 34.19 | -8569 | 12530 | 8.05×10-6 | 0.9998 |
xb =0.5 | 37.88 | -13094 | 89986 | 7.12×10-4 | 0.9992 |
xb =0.6 | 41.81 | -11714 | 87851 | 6.28×10-4 | 0.9992 |
xb =0.7 | 45.74 | -9892 | 88789 | 3.16×10-4 | 0.9997 |
xc =0.4 | 39.83 | -3269 | 91951 | 5.76×10-4 | 0.9997 |
xc =0.5 | 45.33 | -11369 | 88705 | 2.61×10-4 | 0.9988 |
xc =0.6 | 50.92 | -9237 | 91732 | 1.47×10-4 | 0.9962 |
xd =0.3 | 35.83 | -8949 | 8691 | 2.02×10-5 | 0.9997 |
xd =0.4 | 41.76 | -8562 | 12163 | 1.84×10-5 | 0.9983 |
xd =0.6 | 53.37 | -423 | 4922 | 1.47×10-5 | 0.9982 |
Table 4 The parameter results based on the fitting of Wilson equation
x | V2/(cm3·mol-1) | Δg12/ (J·mol-1) | Δg21/ (J·mol-1) | RMSD | R2 |
---|---|---|---|---|---|
xa =0.4 | 27.52 | -7803 | 7105 | 6.74×10-5 | 0.9984 |
xa =0.5 | 29.79 | -7820 | 7533 | 6.70×10-5 | 0.9966 |
xa =0.6 | 32.01 | -7833 | 8181 | 3.54×10-5 | 0.9993 |
xa =0.7 | 34.19 | -8569 | 12530 | 8.05×10-6 | 0.9998 |
xb =0.5 | 37.88 | -13094 | 89986 | 7.12×10-4 | 0.9992 |
xb =0.6 | 41.81 | -11714 | 87851 | 6.28×10-4 | 0.9992 |
xb =0.7 | 45.74 | -9892 | 88789 | 3.16×10-4 | 0.9997 |
xc =0.4 | 39.83 | -3269 | 91951 | 5.76×10-4 | 0.9997 |
xc =0.5 | 45.33 | -11369 | 88705 | 2.61×10-4 | 0.9988 |
xc =0.6 | 50.92 | -9237 | 91732 | 1.47×10-4 | 0.9962 |
xd =0.3 | 35.83 | -8949 | 8691 | 2.02×10-5 | 0.9997 |
xd =0.4 | 41.76 | -8562 | 12163 | 1.84×10-5 | 0.9983 |
xd =0.6 | 53.37 | -423 | 4922 | 1.47×10-5 | 0.9982 |
T0/K | Slope | Intercept | m | K | R2 |
---|---|---|---|---|---|
313.15 | 0.354 | -3.880 | 2.83 | 9.46×1026 | 0.9997 |
318.15 | 0.301 | -4.164 | 3.32 | 4.17×1027 | 0.9982 |
323.15 | 0.277 | -4.366 | 3.61 | 1.32×1028 | 0.9974 |
328.15 | 0.255 | -4.472 | 3.93 | 3.38×1028 | 0.9976 |
Table 5 Regression cofficient and kinetics parameters calculated by self-consistent Nyvlt-like equation
T0/K | Slope | Intercept | m | K | R2 |
---|---|---|---|---|---|
313.15 | 0.354 | -3.880 | 2.83 | 9.46×1026 | 0.9997 |
318.15 | 0.301 | -4.164 | 3.32 | 4.17×1027 | 0.9982 |
323.15 | 0.277 | -4.366 | 3.61 | 1.32×1028 | 0.9974 |
328.15 | 0.255 | -4.472 | 3.93 | 3.38×1028 | 0.9976 |
R/ (K·h-1) | Modified Sangwal’s model | ||||
---|---|---|---|---|---|
Slope | Intercept | γ/(mJ·m-2) | A | R2 | |
2.5 | -102.2 | -1168 | 0.315 | 3.39×1023 | 0.9972 |
5 | -70.26 | -802.6 | 0.357 | 6.81×1023 | 0.9899 |
10 | -49.38 | -563.9 | 0.402 | 1.37×1024 | 0.9843 |
20 | -32.54 | -371.2 | 0.462 | 2.76×1024 | 0.9736 |
Table 6 Regression cofficient and kinetics parameters calculated by modified Sangwal's model
R/ (K·h-1) | Modified Sangwal’s model | ||||
---|---|---|---|---|---|
Slope | Intercept | γ/(mJ·m-2) | A | R2 | |
2.5 | -102.2 | -1168 | 0.315 | 3.39×1023 | 0.9972 |
5 | -70.26 | -802.6 | 0.357 | 6.81×1023 | 0.9899 |
10 | -49.38 | -563.9 | 0.402 | 1.37×1024 | 0.9843 |
20 | -32.54 | -371.2 | 0.462 | 2.76×1024 | 0.9736 |
搅拌转速/ (r·min-1) | 平均粒径/μm | 粒径标准偏差/μm | 粒径横纵比 | 变异系数(CV) |
---|---|---|---|---|
100 | 154.9 | 65.7 | 0.217 | 42.4 |
200 | 171.9 | 72.0 | 0.231 | 41.8 |
300 | 201.3 | 83.1 | 0.242 | 41.2 |
400 | 149.7 | 65.9 | 0.267 | 43.9 |
500 | 117.3 | 50.8 | 0.292 | 43.3 |
Table 7 Effect of different stirring rate on particle size of rebaudioside A
搅拌转速/ (r·min-1) | 平均粒径/μm | 粒径标准偏差/μm | 粒径横纵比 | 变异系数(CV) |
---|---|---|---|---|
100 | 154.9 | 65.7 | 0.217 | 42.4 |
200 | 171.9 | 72.0 | 0.231 | 41.8 |
300 | 201.3 | 83.1 | 0.242 | 41.2 |
400 | 149.7 | 65.9 | 0.267 | 43.9 |
500 | 117.3 | 50.8 | 0.292 | 43.3 |
冷却速率 | 平均粒径/μm | 粒径标准偏差/μm | 粒径横纵比 | 变异系数值(CV) |
---|---|---|---|---|
2.5 K·h-1 (线性) | 118.3 | 41.1 | 0.258 | 34.75 |
5 K·h-1 (线性) | 91.9 | 32.5 | 0.230 | 35.37 |
程序降温 | 134.0 | 46.3 | 0.236 | 34.52 |
Table 8 Effect of different cooling rate on particle size of rebaudioside A
冷却速率 | 平均粒径/μm | 粒径标准偏差/μm | 粒径横纵比 | 变异系数值(CV) |
---|---|---|---|---|
2.5 K·h-1 (线性) | 118.3 | 41.1 | 0.258 | 34.75 |
5 K·h-1 (线性) | 91.9 | 32.5 | 0.230 | 35.37 |
程序降温 | 134.0 | 46.3 | 0.236 | 34.52 |
1 | Gao Z G, Rohani S, Gong J B, et al. Recent developments in the crystallization process: toward the pharmaceutical industry[J]. Engineering, 2017, 3(3): 343-353. |
2 | 赵绍磊, 王耀国, 张腾, 等. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474. |
Zhao S L, Wang Y G, Zhang T, et al. Advanced process control of pharmaceutical crystallization[J]. CIESC Journal, 2020, 71(2): 459-474. | |
3 | 赵绍磊, 王灵宇, 吴送姑. 药物多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 12-21. |
Zhao S L, Wang L Y, Wu S G. Progress in the research of pharmaceutical polymorph[J]. Chemical Industry and Engineering, 2018, 35(3): 12-21. | |
4 | Xu S J, Wang J K, Zhang K K, et al. Nucleation behavior of eszopiclone-butyl acetate solutions from metastable zone widths[J]. Chemical Engineering Science, 2016, 155: 248-257. |
5 | 张春桃, 王海蓉, 王永莉. 头孢曲松钠结晶诱导期的测定及其晶体生长机理的辨识[J]. 中国抗生素杂志, 2011, 36(2): 125-128. |
Zhang C T, Wang H R, Wang Y L. Determination of induction period and crystal growth mechanism of ceftriaxone sodium in acetone-water system[J]. Chinese Journal of Antibiotics, 2011, 36(2): 125-128. | |
6 | Hanson J R, de Oliveira B H. Stevioside and related sweet diterpenoid glycosides[J]. Natural Product Reports, 1993, 10(3): 301-309. |
7 | Ghanta S, Banerjee A, Poddar A, et al. Oxidative DNA damage preventive activity and antioxidant potential of Stevia rebaudiana (Bertoni) Bertoni, a natural sweetener[J]. Journal of Agricultural and Food Chemistry, 2007, 55(26): 10962-10967. |
8 | Ruiz-Ruiz J C, Moguel-Ordoñez Y B, Segura-Campos M R. Biological activity of Stevia rebaudiana Bertoni and their relationship to health[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(12): 2680-2690. |
9 | Yadav S K, Guleria P. Steviol glycosides from stevia: biosynthesis pathway review and their application in foods and medicine[J]. Critical Reviews in Food Science and Nutrition, 2012, 52(11): 988-998. |
10 | 娄力行. 甜菊糖及其衍生物的研究进展[J]. 中国糖料, 2008, 30(2): 70-72. |
Lou L X. Research progress of stevioside and steviol[J]. Sugar Crops of China, 2008, 30(2): 70-72. | |
11 | 魏婷婷. 低莱鲍迪苷A(RA)甜菊糖母液的提纯工艺研究[D]. 天津: 天津大学, 2015. |
Wei T T. Study on purification technology of low-rebodioside A(RA) stevia mother liquor[D]. Tianjin: Tianjin University, 2015. | |
12 | 沈建, 范刚, 杨健. 高纯度莱鲍迪甙A的结晶制备工艺[J]. 轻工机械, 2015, 33(5): 1-5. |
Shen J, Fan G, Yang J. Crystallization preparation technology on high purity rebaudioside A from steviol glycosides[J]. Light Industry Machinery, 2015, 33(5): 1-5. | |
13 | 毛娅. 多溶剂溶析冷却结晶法提纯莱鲍迪甙A的工艺研究[J]. 化工设计通讯, 2018, 44(11): 145-146. |
Mao Y. Purification of rebaudioside A by mixed solventing-out cooling crystallization[J]. Chemical Engineering Design Communications, 2018, 44(11): 145-146. | |
14 | 赵昊, 彭奇均. 溶析结晶法分离莱鲍迪甙A的工艺研究[J]. 应用化工, 2011, 40(8): 1310-1313. |
Zhao H, Peng Q J. Study on the separation of rebaudioside A by solventing-out crystallization[J]. Applied Chemical Industry, 2011, 40(8): 1310-1313. | |
15 | 马庆, 许晓东, 陆文通, 等. 一种常温下从甜菊糖中提取高纯度莱鲍迪苷A的方法: 102485736A[P]. 2012-06-06. |
Ma Q, Xu X D, Lu W T, et al. Method of extracting high purity rebaudiodside A from stevioside at normal temperature: 102485736A[P]. 2012-06-06. | |
16 | 赵宏宇. 莱鲍迪苷A的结晶工艺及其结晶热力学研究[D]. 无锡: 江南大学, 2012. |
Zhao H Y. Studies on the crystallization process and crystallization thermodynamics of rebaudioside A[D]. Wuxi: Jiangnan University, 2012. | |
17 | 郭亚军, 刘文举, 余林达, 等. 酒石酸钠二水合物的溶解度测定及关联[J]. 化学工程, 2017, 45(12): 48-52. |
Guo Y J, Liu W J, Yu L D, et al. Measurement and correlation of solubility of disodium tartrate dehydrate[J]. Chemical Engineering (China), 2017, 45(12): 48-52. | |
18 | 刘欣玉, 孙杰, 罗义芬, 等. ADN的溶解度、结晶介稳区及诱导期的测定[J]. 含能材料, 2019, 27(9): 766-772. |
Liu X Y, Sun J, Luo Y F, et al. Measurement of solubility, metastable zone and induction period of ADN[J]. Chinese Journal of Energetic Materials, 2019, 27(9): 766-772. | |
19 | Cao Y, Du S C, Ke X, et al. Interplay between thermodynamics and kinetics on polymorphic behavior of vortioxetine hydrobromide in reactive crystallization[J]. Organic Process Research & Development, 2020, 24(7): 1233-1243. |
20 | Gu C H, Li H, Gandhi R B, et al. Grouping solvents by statistical analysis of solvent property parameters: implication to polymorph screening[J]. International Journal of Pharmaceutics, 2004, 283(1/2): 117-125. |
21 | Wilson G M. Vapor-liquid equilibrium(Ⅺ): A new expression for the excess free energy of mixing[J]. Journal of the American Chemical Society, 1964, 86(2): 127-130. |
22 | Ouyang J B, Chen J, Huang H Q, et al. Solid-liquid equilibrium and dissolution thermodynamics of 4-methylumbelliferon in different solvents[J]. Journal of Molecular Liquids, 2020, 306: 112797. |
23 | Xie Y, Shi H W, Du C B, et al. Solubility determination and modeling for 4, 4'-dihydroxydiphenyl sulfone in mixed solvents of (acetone, ethyl acetate, or acetonitrile) + methanol and acetone + ethanol from (278.15 to 313.15) K[J]. Journal of Chemical & Engineering Data, 2016, 61(10): 3519-3526. |
24 | Wang L P, Feng H T, Peng J Y, et al. Solubility, metastable zone width, and nucleation kinetics of sodium dichromate dihydrate[J]. Journal of Chemical & Engineering Data, 2015, 60(1): 185-191. |
25 | Kubota N. A new interpretation of metastable zone widths measured for unseeded solutions[J]. Journal of Crystal Growth, 2008, 310(3): 629-634. |
26 | 龚俊波, 李康, 何兵兵, 等. 果糖在高黏度水溶液中的生长模型及机理[J]. 化工进展, 2020, 39(5): 1714-1721. |
Gong J B, Li K, He B B, et al. Model and mechanism of fructose crystal growth in aqueous solution with high viscosity[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1714-1721. | |
27 | Jacobsen C, Garside J, Hoare M. Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths[J]. Biotechnology and Bioengineering, 1998, 57(6): 666-675. |
28 | Kobari M, Kubota N, Hirasawa I. Deducing primary nucleation parameters from metastable zone width and induction time data determined with simulation[J]. CrystEngComm, 2013, 15(6): 1199-1209. |
29 | Sangwal K. A novel self-consistent Nývlt-like equation for metastable zone width determined by the polythermal method[J]. Crystal Research and Technology, 2009, 44(3): 231-247. |
30 | Sangwal K. Novel approach to analyze metastable zone width determined by the polythermal method: physical interpretation of various parameters[J]. Crystal Growth & Design, 2009, 9(2): 942-950. |
31 | Kadam S S, Kramer H J M, ter Horst J H. Combination of a single primary nucleation event and secondary nucleation in crystallization processes[J]. Crystal Growth & Design, 2011, 11(4): 1271-1277. |
32 | Kashchiev D, Borissova A, Hammond R B, et al. Effect of cooling rate on the critical undercooling for crystallization[J]. Journal of Crystal Growth, 2010, 312(5): 698-704. |
33 | Upreti M, Smit J P, Hagen E J, et al. Single crystal growth and structure determination of the natural “high potency” sweetener rebaudioside A[J]. Crystal Growth & Design, 2012, 12(2): 990-993. |
34 | 丁绪淮, 谈遒. 工业结晶[M]. 北京: 化学工业出版社, 1985: 79. |
Ding X H, Tan Q. Industrial Crystallization [M]. Beijing: Chemical Industry Press, 1985: 79. | |
35 | Kashchiev D, van Rosmalen G M. Review: nucleation in solutions revisited[J]. Crystal Research and Technology, 2003, 38(7/8): 555-574. |
36 | Kashchiev D. Nucleation: Basic Theory with Applications [M]. London: Butterworth-Heinemann, 2000: 156-163. |
37 | Mullin J W. Crystallization [M]. 4th ed. London: Butterworths, 2001: 181-215 |
38 | Granberg R A, Ducreux C, Gracin S, et al. Primary nucleation of paracetamol in acetone-water mixtures[J]. Chemical Engineering Science, 2001, 56(7): 2305-2313. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[3] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[4] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[5] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[6] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[7] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[8] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
[9] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
[10] | Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires [J]. CIESC Journal, 2022, 73(7): 3038-3044. |
[11] | Wen LI, Zhong LAN, Weili QIANG, Wenzhi REN, Bingang DU, Xuehu MA. Evolution characteristics of clusters in transitional region near subcooled wall during condensation process of steam [J]. CIESC Journal, 2022, 73(7): 2865-2873. |
[12] | Qingjie ZHAO, Xiaohong HU, Chao ZHANG, Fengxian FAN. Nucleation behavior of water vapor on fine particle containing insoluble core and soluble inorganic salt [J]. CIESC Journal, 2022, 73(7): 3251-3261. |
[13] | Fan WANG, Yanbo LIU, Kangli LI, Li TONG, Meitang JIN, Weiwei TANG, Mingyang CHEN, Junbo GONG. Research progress on mesoscale nucleation process in solution crystallization [J]. CIESC Journal, 2022, 73(6): 2318-2333. |
[14] | Yuxin REN, Runfeng XU, Wanying WANG, Pengzhong CHEN, Xiaojun PENG. Synthesis and stability study of anthraquinone dyes for color photoresist [J]. CIESC Journal, 2022, 73(5): 2251-2261. |
[15] |
Siying REN, Xudong YU, Jun LUO, Xia FENG, Zhixing ZHAO, Zhihao YAO.
Phase equilibria of aqueous quaternary system Li+, K+, |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||