CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2318-2333.DOI: 10.11949/0438-1157.20220159
• Reviews and monographs • Previous Articles Next Articles
Fan WANG1(),Yanbo LIU1,Kangli LI2,Li TONG2,Meitang JIN2,Weiwei TANG1,Mingyang CHEN1,2(),Junbo GONG1,2,3()
Received:
2022-02-07
Revised:
2022-03-09
Online:
2022-06-30
Published:
2022-06-05
Contact:
Mingyang CHEN,Junbo GONG
汪帆1(),刘岩博1,李康丽2,童丽2,金美堂2,汤伟伟1,陈明洋1,2(),龚俊波1,2,3()
通讯作者:
陈明洋,龚俊波
作者简介:
汪帆(1999—),男,硕士研究生, 基金资助:
CLC Number:
Fan WANG, Yanbo LIU, Kangli LI, Li TONG, Meitang JIN, Weiwei TANG, Mingyang CHEN, Junbo GONG. Research progress on mesoscale nucleation process in solution crystallization[J]. CIESC Journal, 2022, 73(6): 2318-2333.
汪帆, 刘岩博, 李康丽, 童丽, 金美堂, 汤伟伟, 陈明洋, 龚俊波. 溶液结晶中的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2318-2333.
Fig.13 Decomposition of local inhomogeneous gas-solid flow field (a); Decomposition of local inhomogeneous solid-liquid flow field during nucleation (b)
1 | Liu X W, Chee S W, Raj S, et al. Three-step nucleation of metal-organic framework nanocrystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2008880118. |
2 | Myerson A S, Trout B L. Nucleation from solution[J]. Science, 2013, 341(6148): 855-856. |
3 | Tsarfati Y, Biran I, Wiedenbeck E, et al. Continuum crystallization model derived from pharmaceutical crystallization mechanisms[J]. ACS Central Science, 2021, 7(5): 900-908. |
4 | Olafson K N, Nguyen T Q, Rimer J D, et al. Antimalarials inhibit hematin crystallization by unique drug-surface site interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29): 7531-7536. |
5 | Davey R J, Schroeder S L M, ter Horst J H. Nucleation of organic crystals—a molecular perspective[J]. Angewandte Chemie International Edition, 2013, 52(8): 2166-2179. |
6 | Fang C, Tang W W, Wu S G, et al. Ultrasound-assisted intensified crystallization of L-glutamic acid: crystal nucleation and polymorph transformation[J]. Ultrasonics Sonochemistry, 2020, 68: 105227. |
7 | Shi P, Xu S J, Ma Y M, et al. Probing the structural pathway of conformational polymorph nucleation by comparing a series of α, ω-alkanedicarboxylic acids[J]. IUCrJ, 2020, 7(3): 422-433. |
8 | Davey R J, Allen K, Blagden N, et al. Crystal engineering—nucleation, the key step[J]. CrystEngComm, 2002, 4(47): 257-264. |
9 | Coquerel G. Crystallization of molecular systems from solution: phase diagrams, supersaturation and other basic concepts[J]. Chemical Society Reviews, 2014, 43(7): 2286-2300. |
10 | Martin S T. Phase transitions of aqueous atmospheric particles[J]. Chemical Reviews, 2000, 100(9): 3403-3454. |
11 | Karthika S, Radhakrishnan T K, Kalaichelvi P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design, 2016, 16(11): 6663-6681. |
12 | Li X, Yin Q X, Zhang M J, et al. Antisolvent crystallization of erythromycin ethylsuccinate in the presence of liquid-liquid phase separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 766-776. |
13 | Cui P L, Zhang X W, Yin Q X, et al. Evidence of hydrogen-bond formation during crystallization of cefodizime sodium from induction-time measurements and in situ Raman spectroscopy[J]. Industrial & Engineering Chemistry Research, 2012, 51(42): 13663-13669. |
14 | Gower L B, Odom D J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process[J]. Journal of Crystal Growth, 2000, 210(4): 719-734. |
15 | Gebauer D, Cölfen H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6): 564-584. |
16 | Thanh N T K, MacLean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15): 7610-7630. |
17 | Klaerner G, Padmanabhan R. Multi-step/step-wise polymerization of well-defined oligomers[M]//Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier, 2016. |
18 | Sun M M, Tang W W, Du S C, et al. Understanding the roles of oiling-out on crystallization of β-alanine: unusual behavior in metastable zone width and surface nucleation during growth stage[J]. Crystal Growth & Design, 2018, 18(11): 6885-6890. |
19 | Vekilov P G. Dense liquid precursor for the nucleation of ordered solid phases from solution[J]. Crystal Growth & Design, 2004, 4(4): 671-685. |
20 | Chen J J, Zhu E B, Liu J, et al. Building two-dimensional materials one row at a time: avoiding the nucleation barrier[J]. Science, 2018, 362(6419): 1135-1139. |
21 | Li J H, Huang W L, Chen J H. Possible roadmap to advancing the knowledge system and tackling challenges from complexity[J]. Chemical Engineering Science, 2021, 237:116548. |
22 | Ge W, Chen F G, Gao J, et al. Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism[J]. Chemical Engineering Science, 2007, 62(13): 3346-3377. |
23 | Ge W, Wang W, Yang N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm[J]. Chemical Engineering Science, 2011, 66(19): 4426-4458. |
24 | Smeets P J M, Cho K R, Kempen R G E, et al. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy[J]. Nature Materials, 2015, 14(4): 394-399. |
25 | Yang J, Koo J, Kim S, et al. Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by high-resolution liquid-phase electron microscopy[J]. Journal of the American Chemical Society, 2019, 141(2): 763-768. |
26 | Baumgartner J, Dey A, Bomans P H H, et al. Nucleation and growth of magnetite from solution[J]. Nature Materials, 2013, 12(4): 310-314. |
27 | Xu S J, Chen Y F, Gong J B, et al. Interplay between kinetics and thermodynamics on the probability nucleation rate of a urea-water crystallization system[J]. Crystal Growth & Design, 2018, 18(4): 2305-2315. |
28 | Yang J, Xu S J, Wang J K, et al. Nucleation behavior of ethyl vanillin: balance between chemical potential difference and saturation temperature[J]. Journal of Molecular Liquids, 2020, 303: 112609. |
29 | Xu S J, Wang J K, Zhang K K, et al. Nucleation behavior of eszopiclone-butyl acetate solutions from metastable zone widths[J]. Chemical Engineering Science, 2016, 155: 248-257. |
30 | Volmer M, Weber. Keimbildung in übersättigten gebilden[J]. Zeitschrift Für Physikalische Chemie, 1926, 119U(1): 277-301. |
31 | Farkas L. Keimbildungsgeschwindigkeit in übersättigten dämpfen[J]. Zeitschrift Für Physikalische Chemie, 1927, 125U(1): 236-242. |
32 | Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen[J]. Annalen Der Physik, 1935, 416(8): 719-752. |
33 | Bai G, Gao D, Liu Z, et al. Probing the critical nucleus size for ice formation with graphene oxide nanosheets[J]. Nature, 2019, 576(7787): 437-441. |
34 | Garten V A, Head R B. Homogeneous nucleation and the phenomenon of crystalloluminescence[J]. Philosophical Magazine, 1966, 14(132): 1243-1253. |
35 | Gilra N K. Precrystallization theory applied to ultrasonic velocity in supercooled water[J]. Journal of the Physical Society of Japan, 1967, 23(6): 1431. |
36 | Adamski T. Commination of crystal nucleation by a precipitation method[J]. Nature, 1963, 197(4870): 894. |
37 | Yau S T, Vekilov P G. Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization[J]. Journal of the American Chemical Society, 2001, 123(6): 1080-1089. |
38 | Sleutel M, Lutsko J, van Driessche A E S, et al. Observing classical nucleation theory at work by monitoring phase transitions with molecular precision[J]. Nature Communications, 2014, 5: 5598. |
39 | Tidhar Y, Weissman H, Tworowski D, et al. Mechanism of crystalline self-assembly in aqueous medium: a combined cryo-TEM/kinetic study[J]. Chemistry - A European Journal, 2014, 20(33): 10332-10342. |
40 | Wallace A F, Hedges L O, Fernandez-Martinez A, et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions[J]. Science, 2013, 341(6148): 885-889. |
41 | Galkin O, Pan W C, Filobelo L, et al. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers[J]. Biophysical Journal, 2007, 93(3): 902-913. |
42 | ten Wolde P R, Frenkel D. Enhancement of protein crystal nucleation by critical density fluctuations[J]. Science, 1997, 277(5334): 1975-1978. |
43 | Talanquer V, Oxtoby D W. Crystal nucleation in the presence of a metastable critical point[J]. The Journal of Chemical Physics, 1998, 109(1): 223-227. |
44 | Sleutel M, van Driessche A E S. Role of clusters in nonclassical nucleation and growth of protein crystals[J]. PNAS, 2014, 111(5): 201309320. |
45 | Lutsko J F. How crystals form: a theory of nucleation pathways[J]. Science Advances, 2019, 5(4): eaav7399. |
46 | Garcia N A, Malini R I, Freeman C L, et al. Simulation of calcium phosphate prenucleation clusters in aqueous solution: association beyond ion pairing[J]. Crystal Growth & Design, 2019, 19(11): 6422-6430. |
47 | Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822. |
48 | Scheck J, Wu B H, Drechsler M, et al. The molecular mechanism of iron(Ⅲ) oxide nucleation[J]. The Journal of Physical Chemistry Letters, 2016, 7(16): 3123-3130. |
49 | Gebauer D, Kellermeier M, Gale J D, et al. Pre-nucleation clusters as solute precursors in crystallisation[J]. Chemical Society Reviews, 2014, 43(7): 2348-2371. |
50 | van Vleet M J, Weng T T, Li X Y, et al. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth[J]. Chemical Reviews, 2018, 118(7): 3681-3721. |
51 | Kellermeier M, Rosenberg R, Moise A, et al. Amino acids form prenucleation clusters: ESI-MS as a fast detection method in comparison to analytical ultracentrifugation[J]. Faraday Discussions, 2012, 159: 23. |
52 | Nielsen M H, Aloni S, de Yoreo J J. In situ TEM imaging of CaCO₃ nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158-1162. |
53 | Shi P, Xu S J, Yang H Y, et al. Use of additives to regulate solute aggregation and direct conformational polymorph nucleation of pimelic acid[J]. IUCrJ, 2021, 8(Pt 2): 161-167. |
54 | Li S, Tang W W, Shi P, et al. A new perspective of gallic acid on calcium oxalate nucleation[J]. Crystal Growth & Design, 2020, 20(5): 3173-3181. |
55 | Zhao S L, Gao J, Ma S Y, et al. Mechanism and modelling of reactive crystallization process of lithium carbonate[J]. Processes, 2019, 7(5): 248. |
56 | 龚俊波, 李斯, 陈明洋, 等. 氯吡格雷硫酸氢盐的溶析结晶过程研究[J]. 中国医药工业杂志, 2018, 49(5): 677-683. |
Gong J B, Li S, Chen M Y, et al. Study on the process of antisolvent crystallization of clopidogrel hydrogen sulfate[J]. Chinese Journal of Pharmaceuticals, 2018, 49(5): 677-683. | |
57 | Chen M Y, Du S C, Zhang T, et al. Spherical crystallization and the mechanism of clopidogrel hydrogen sulfate[J]. Chemical Engineering & Technology, 2018, 41(6): 1259-1265. |
58 | Pouget E M, Bomans P H H, Goos J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458. |
59 | Xing J, Schweighauser L, Okada S, et al. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses[J]. Nature Communications, 2019, 10: 3608. |
60 | Bewernitz M A, Gebauer D, Long J, et al. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate[J]. Faraday Discussions, 2012, 159: 291. |
61 | de Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): aaa6760. |
62 | Olszta M J, Cheng X G, Jee S S, et al. Bone structure and formation: a new perspective[J]. Materials Science and Engineering: R: Reports, 2007, 58(3/4/5): 77-116. |
63 | Ivanov V K, Fedorov P P, Ye Baranchikov A, et al. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth[J]. Russian Chemical Reviews, 2014, 83(12): 1204-1222. |
64 | Li D S, Nielsen M H, Lee J R I, et al. Direction-specific interactions control crystal growth by oriented attachment[J]. Science, 2012, 336(6084): 1014-1018. |
65 | Rodríguez-Navarro C, Ruiz-Agudo E, Harris J, et al. Nonclassical crystallization in vivo et in vitro (Ⅱ): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism[J]. Journal of Structural Biology, 2016, 196(2): 260-287. |
66 | Li M Y, Li S, Tang W W, et al. Understanding the crystallization pathway of monosodium urate monohydrate in a biomimetic matrix[J]. Crystal Growth & Design, 2020, 20(2): 804-812. |
67 | Mirabello G, Ianiro A, Bomans P H H, et al. Crystallization by particle attachment is a colloidal assembly process[J]. Nature Materials, 2020, 19(4): 391-396. |
68 | Michaels T C T, Lazell H W, Arosio P, et al. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation[J]. The Journal of Chemical Physics, 2015, 143(5): 054901. |
69 | Li H Y, Chavez A D, Li H F, et al. Nucleation and growth of covalent organic frameworks from solution: the example of COF-5[J]. Journal of the American Chemical Society, 2017, 139(45): 16310-16318. |
70 | Chen H, Li M, Lu Z, et al. Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states[J]. Nature Communications, 2019, 10: 3872. |
71 | Kashchiev D, van Rosmalen G M. Review: nucleation in solutions revisited[J]. Crystal Research and Technology, 2003, 38(78): 555-574. |
72 | Tang W W, Sima A D, Gong J B, et al. Kinetic difference between concomitant polymorphism and solvent-mediated phase transformation: a case of tolfenamic acid[J]. Crystal Growth & Design, 2020, 20(3): 1779-1788. |
73 | Du W, Yin Q X, Bao Y, et al. Concomitant polymorphism of prasugrel hydrochloride in reactive crystallization[J]. Industrial & Engineering Chemistry Research, 2013, 52(46): 16182-16189. |
74 | Zhang K K, Xu S J, Liu S Y, et al. Novel strategy to control polymorph nucleation of gamma pyrazinamide by preferred intermolecular interactions during heterogeneous nucleation[J]. Crystal Growth & Design, 2018, 18(9): 4874-4879. |
75 | 林家伟, 石鹏, 龚俊波, 等. 表面诱导药物多晶型成核的研究进展[J]. 化工学报, 2021, 72(2): 814-827. |
Lin J W, Shi P, Gong J B, et al. Progress on surface-induced nucleation of drug for controlling polymorphism[J]. CIESC Journal, 2021, 72(2): 814-827. | |
76 | 赵绍磊, 王灵宇, 吴送姑. 药物多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 12-21. |
Zhao S L, Wang L Y, Wu S G. Progress in the research of pharmaceutical polymorph[J]. Chemical Industry and Engineering, 2018, 35(3): 12-21. | |
77 | 汤伟伟, 李斯, 龚俊波. 有机晶体成核分子机理研究进展[J]. 化学工业与工程, 2018, 35(3): 2-11. |
Tang W W, Li S, Gong J B. Research progress on molecular mechanism of nucleation of organic crystals[J]. Chemical Industry and Engineering, 2018, 35(3): 2-11. | |
78 | Erdemir D, Lee A Y, Myerson A S. Nucleation of crystals from solution: classical and two-step models[J]. Accounts of Chemical Research, 2009, 42(5): 621-629. |
79 | Lee J, Yang J, Kwon S G, et al. Nonclassical nucleation and growth of inorganic nanoparticles[J]. Nature Reviews Materials, 2016, 1: 16034. |
80 | Gebauer D, Wolf S E. Designing solid materials from their solute state: a shift in paradigms toward a holistic approach in functional materials chemistry[J]. Journal of the American Chemical Society, 2019, 141(11): 4490-4504. |
81 | Gilbert P U P A, Porter S M, Sun C Y, et al. Biomineralization by particle attachment in early animals[J]. PNAS, 2019, 116(36): 17659-17665. |
82 | Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature, 2005, 437(7059): 664-670. |
83 | Wu Z H, Yang S L, Wu W. Shape control of inorganic nanoparticles from solution[J]. Nanoscale, 2016, 8(3): 1237-1259. |
84 | Zhang Q, Liu S J, Yu S H. Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future[J]. J. Mater. Chem., 2009, 19(2): 191-207. |
85 | Guo L, Wu J, Li J H. Complexity at mesoscales: a common challenge in developing artificial intelligence[J]. Engineering, 2019,5(5):924-929. |
86 | Li J H. Approaching virtual process engineering with exploring mesoscience[J]. Chemical Engineering Journal, 2015, 278: 541-555. |
87 | Li J H, Huang W L. Towards Mesoscience: the Principle of Compromise in Competition[M]. Berlin, Heidelberg: Springer, 2014. |
88 | Li J H, Tung Y, Kwauk M. Method of energy minimization in multi-scale modeling of particle-fluid two-phase flow[M]//Circulating Fluidized Bed Technology. Amsterdam: Elsevier, 1988: 89-103. |
89 | Yang N, Wu Z Y, Chen J H, et al. Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2011, 66(14): 3212-3222. |
90 | Wang L M, Qiu X P, Zhang L, et al. Turbulence originating from the compromise-in-competition between viscosity and inertia[J]. Chemical Engineering Journal, 2016, 300: 83-97. |
91 | Li J H, Zhang Z D, Ge W, et al. A simple variational criterion for turbulent flow in pipe[J]. Chemical Engineering Science, 1999, 54(8): 1151-1154. |
92 | Huang W L, Li J H. Mesoscale model for heterogeneous catalysis based on the principle of compromise in competition[J]. Chemical Engineering Science, 2016, 147: 83-90. |
93 | 王维, 洪坤, 鲁波娜, 等. 流态化模拟: 基于介尺度结构的多尺度CFD[J]. 化工学报, 2013, 64(1): 95-106. |
Wang W, Hong K, Lu B N, et al. Fluidized bed simulation: structure-dependent multiscale CFD[J]. CIESC Journal, 2013, 64(1): 95-106. | |
94 | Li J H, Kwauk M. Multiscale nature of complex fluid-particle systems[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4227-4237. |
95 | 李静海. 两相流多尺度作用模型和能量最小方法[D]. 北京: 中国科学院, 1987. |
Li J H. Multiscale action model and energy minimization method for two-phase flow[D]. Beijing: Chinese Academy of Sciences, 1987. | |
96 | 李飞, 陈程, 王锦生, 等. 稠密气固两相QL-EMMS曳力模型及改进[J]. 工程热物理学报, 2011, 32(1): 75-79. |
Li F, Chen C, Wang J S, et al. QL-EMMS drag model & its revision for fluidized dense gas-solid two-phase flow[J]. Journal of Engineering Thermophysics, 2011, 32(1): 75-79. | |
97 | 佟颖, Nouman Ahmad, 鲁波娜, 等. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692. |
Tong Y, Nouman A, Lu B N, et al. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model[J]. CIESC Journal, 2019, 70(5): 1682-1692. | |
98 | Horio M, Kuroki H. Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized beds[J]. Chemical Engineering Science, 1994, 49(15): 2413-2421. |
99 | Bi H T, Grace J R. Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 57(3): 261-271. |
100 | Zhu H Y, Zhu J. Characterization of fluidization behavior in the bottom region of CFB risers[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 169-179. |
101 | Li J H, Zhang J Y, Ge W, et al. Multi-scale methodology for complex systems[J]. Chemical Engineering Science, 2004, 59(8/9): 1687-1700. |
102 | Zhang J Y, Ge W, Li J H. Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling[J]. Chemical Engineering Science, 2005, 60(11): 3091-3099. |
103 | Li J H, Cheng C L, Zhang Z D, et al. The EMMS model—its application, development and updated concepts[J]. Chemical Engineering Science, 1999, 54(22): 5409-5425. |
104 | Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23. |
105 | Li J H, Ge W, Wang W, et al. From Multiscale Modeling to Meso-science[M]. Berlin, Heidelberg: Springer, 2013. |
106 | Ren Y, Gao J, Xu J, et al. Key factors in chaperonin-assisted protein folding[J]. Particuology, 2012, 10(1): 105-116. |
107 | Li J H, Huang W L, Chen J H, et al. Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335. |
108 | Li J H, Huang W L. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 41-60. |
109 | Liu Z K, Yin Q X, Zhang H, et al. Investigation of the crystallization of disodium 5'-inosinate in a water + ethanol system: solubility, nucleation mechanism, and crystal morphology[J]. Industrial & Engineering Chemistry Research, 2014, 53(21): 8913-8919. |
110 | Zhang K K, Xu S J, Gong J B, et al. Revealing the critical role of template functional group ordering in the template-directed crystallization of pyrazinamide[J]. CrystEngComm, 2019, 21(42): 6382-6389. |
111 | Zhang J L, Liu A Y, Han Y, et al. Effects of self-assembled monolayers on selective crystallization of tolbutamide[J]. Crystal Growth & Design, 2011, 11(12): 5498-5506. |
112 | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281. |
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Chinese Science: Chemistry, 2014, 44(3): 277-281. | |
113 | 杨宁, 李静海. 化学工程中的介尺度科学与虚拟过程工程: 分析与展望[J]. 化工学报, 2014, 65(7): 2403-2409. |
Yang N, Li J H. Mesoscience in chemical engineering and virtual process engineering: analysis and perspective[J]. CIESC Journal, 2014, 65(7): 2403-2409. | |
114 | Shafiq S I, Sanin C, Szczerbicki E, et al. Virtual engineering factory: creating experience base for industry 4.0[J]. Cybernetics and Systems, 2016, 47(1/2): 32-47. |
115 | Ge W, Guo L, Liu X H, et al. Mesoscience-based virtual process engineering[J]. Computers & Chemical Engineering, 2019, 126: 68-82. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[7] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[8] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[9] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[10] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[11] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[12] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[13] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[14] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[15] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 718
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 628
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||