CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5582-5589.DOI: 10.11949/0438-1157.20210935
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xuemei XUAN(),Miao WANG,Dizong CAI,Rui ZHANG,Wenjie LAN()
Received:
2021-07-08
Revised:
2021-08-20
Online:
2021-11-12
Published:
2021-11-05
Contact:
Wenjie LAN
通讯作者:
兰文杰
作者简介:
玄雪梅(1995—),女,博士研究生,CLC Number:
Xuemei XUAN, Miao WANG, Dizong CAI, Rui ZHANG, Wenjie LAN. Fundamental study on flow and reaction performance of isobutane alkylation catalyzed by ionic liquid in microreactor[J]. CIESC Journal, 2021, 72(11): 5582-5589.
玄雪梅, 王苗, 蔡迪宗, 张睿, 兰文杰. 离子液体催化烷基化体系在微反应器内的流动和反应基础研究[J]. 化工学报, 2021, 72(11): 5582-5589.
Add to citation manager EndNote|Ris|BibTeX
混合烃组分 | 摩尔分数/% |
---|---|
异丁烷 | 97.7540 |
正丁烷 | 0.0675 |
反-2-丁烯 | 0.0192 |
正-1-丁烯 | 0.0254 |
异丁烯 | 0.0201 |
顺-2-丁烯 | 2.1138 |
Table 1 Components of the feedstock
混合烃组分 | 摩尔分数/% |
---|---|
异丁烷 | 97.7540 |
正丁烷 | 0.0675 |
反-2-丁烯 | 0.0192 |
正-1-丁烯 | 0.0254 |
异丁烯 | 0.0201 |
顺-2-丁烯 | 2.1138 |
试剂 | 分子式 | 密度/ (g/cm3) | 黏度/ (mPa·s) |
---|---|---|---|
正辛烷 | C8H18 | 0.70 | 0.55 |
基础离子液体 | Et3NHCl-1.8AlCl3 | 1.24 | 34.15 |
复合离子液体 | Et3NHCl-1.8AlCl3-xCuCl | 1.29 | 75.57 |
Table 2 Density and viscosity of the fluid
试剂 | 分子式 | 密度/ (g/cm3) | 黏度/ (mPa·s) |
---|---|---|---|
正辛烷 | C8H18 | 0.70 | 0.55 |
基础离子液体 | Et3NHCl-1.8AlCl3 | 1.24 | 34.15 |
复合离子液体 | Et3NHCl-1.8AlCl3-xCuCl | 1.29 | 75.57 |
序号 | 体系 | 界面张力/(mN/m) | |
---|---|---|---|
分散相 | 连续相 | ||
(W1) | 正辛烷 | 基础离子液体 | 7.75 |
(W2) | 正辛烷 | 复合离子液体 | 10.21 |
Table 3 Interfacial tension of two-phase fluid
序号 | 体系 | 界面张力/(mN/m) | |
---|---|---|---|
分散相 | 连续相 | ||
(W1) | 正辛烷 | 基础离子液体 | 7.75 |
(W2) | 正辛烷 | 复合离子液体 | 10.21 |
产物 | 产物分布/%(质量) | 平均值 | 标准偏差/%(质量) | 相对标准偏差/% | ||
---|---|---|---|---|---|---|
1# | 2# | 3# | ||||
C5 | 6.98 | 7.66 | 7.84 | 7.49 | 0.40 | 6.06 |
C6 | 9.15 | 9.7 | 10.72 | 9.86 | 0.53 | 8.08 |
C7 | 7.38 | 6.79 | 7.75 | 7.31 | 0.52 | 6.62 |
C8 | 41.05 | 38.39 | 38.78 | 39.41 | 1.54 | 3.64 |
35.44 | 37.46 | 34.92 | 35.94 | 1.56 | 3.73 | |
C8组分 | ||||||
TMPs | 35.16 | 33.2 | 33.34 | 33.9 | 1.13 | 3.23 |
DMHs | 5.61 | 4.89 | 5.17 | 5.22 | 0.43 | 6.95 |
Table 4 Parallel experiments results
产物 | 产物分布/%(质量) | 平均值 | 标准偏差/%(质量) | 相对标准偏差/% | ||
---|---|---|---|---|---|---|
1# | 2# | 3# | ||||
C5 | 6.98 | 7.66 | 7.84 | 7.49 | 0.40 | 6.06 |
C6 | 9.15 | 9.7 | 10.72 | 9.86 | 0.53 | 8.08 |
C7 | 7.38 | 6.79 | 7.75 | 7.31 | 0.52 | 6.62 |
C8 | 41.05 | 38.39 | 38.78 | 39.41 | 1.54 | 3.64 |
35.44 | 37.46 | 34.92 | 35.94 | 1.56 | 3.73 | |
C8组分 | ||||||
TMPs | 35.16 | 33.2 | 33.34 | 33.9 | 1.13 | 3.23 |
DMHs | 5.61 | 4.89 | 5.17 | 5.22 | 0.43 | 6.95 |
产物 | 产物分布(质量分数)/% | |||
---|---|---|---|---|
100 μm① | 200 μm② | 500 μm② | 86 μm③[ | |
C5 | 9.65 | 7.37 | 10.88 | 4.36 |
C6 | 6.53 | 6.43 | 5.65 | 7.22 |
C7 | 5.78 | 6.12 | 3.90 | 5.56 |
C8 | 70.90 | 66.18 | 33.60 | 61.36 |
7.12 | 13.90 | 45.98 | 21.50 | |
C8分布 | ||||
TMPs | 66 | 59.89 | 29.11 | 56.63 |
DMHs | 4.93 | 6.09 | 4.12 | 5.28 |
TMPs/DMHs | 13.4 | 9.83 | 7.06 | 8.10 |
RON | 95.3 | 94 | 83.7 | 92.11 |
烯烃转化率 | 94.96 | 99.65 | 99.34 |
Table 5 Effect of droplet size on yields
产物 | 产物分布(质量分数)/% | |||
---|---|---|---|---|
100 μm① | 200 μm② | 500 μm② | 86 μm③[ | |
C5 | 9.65 | 7.37 | 10.88 | 4.36 |
C6 | 6.53 | 6.43 | 5.65 | 7.22 |
C7 | 5.78 | 6.12 | 3.90 | 5.56 |
C8 | 70.90 | 66.18 | 33.60 | 61.36 |
7.12 | 13.90 | 45.98 | 21.50 | |
C8分布 | ||||
TMPs | 66 | 59.89 | 29.11 | 56.63 |
DMHs | 4.93 | 6.09 | 4.12 | 5.28 |
TMPs/DMHs | 13.4 | 9.83 | 7.06 | 8.10 |
RON | 95.3 | 94 | 83.7 | 92.11 |
烯烃转化率 | 94.96 | 99.65 | 99.34 |
1 | 毕建国. 烷基化油生产技术的进展[J]. 化工进展, 2007, 26(7): 934-939. |
Bi J G. Advances in alkylate manufacture technology[J]. Chemical Industry and Engineering Progress, 2007, 26(7): 934-939. | |
2 | Gan P X, Tang S W. Research progress in ionic liquids catalyzed isobutane/butene alkylation[J]. Chinese Journal of Chemical Engineering, 2016, 24(11): 1497-1504. |
3 | 李迪, 孙伟振, 奚桢浩, 等. 混合丁烯/异丁烷硫酸烷基化反应动力学[J]. 化工学报, 2015, 66(2): 585-590. |
Li D, Sun W Z, Xi Z H, et al. Alkylation kinetics of mixed butenes/isobutane by sulfuric acid [J]. CIESC Journal, 2015, 66(2): 585-590. | |
4 | Hommeltoft S I. Isobutane alkylation recent developments and future perspectives[J]. Applied Catalysis A: General, 2001, 221(1): 421-428. |
5 | Albright L F. Present and future alkylation processes in refineries[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1409-1413. |
6 | Corma A, Martínez A. Chemistry, catalysts, and processes for isoparaffin-olefin alkylation: actual situation and future trends[J]. Catalysis Reviews, 1993, 35(4): 483-570. |
7 | Busca G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chemical Reviews, 2007, 107(11): 5366-5410. |
8 | Olah G A, Mathew T, Goeppert A, et al. Ionic liquid and solid HF equivalent amine-poly(hydrogen fluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation[J]. Journal of the American Chemical Society, 2005, 127(16): 5964-5969. |
9 | 刘鹰, 刘植昌, 徐春明. 异丁烷与2-丁烯在含有抑制剂离子液体中的烷基化反应[J]. 化工学报, 2005, 56(11): 2119-2123. |
Liu Y, Liu Z C, Xu C M. Alkylation of isobutane and 2-butene in inhibited chloroaluminate ionic liquids[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(11): 2119-2123. | |
10 | Li L T, Zhang J S, Du C C, et al. Intensification of the sulfuric acid alkylation process with trifluoroacetic acid[J]. AIChE Journal, 2019, 65(1): 113-119. |
11 | Huang C P, Liu Z C, Xu C M, et al. Effects of additives on the properties of chloroaluminate ionic liquids catalyst for alkylation of isobutane and butene[J]. Applied Catalysis A: General, 2004, 277(1/2): 41-43. |
12 | Liu Y, Hu R S, Xu C M, et al. Alkylation of isobutene with 2-butene using composite ionic liquid catalysts[J]. Applied Catalysis A: General, 2008, 346(1/2): 189-193. |
13 | Liu Z C, Meng X H, Zhang R, et al. Reaction performance of isobutane alkylation catalyzed by a composite ionic liquid at a short contact time[J]. AIChE Journal, 2014, 60(6): 2244-2253. |
14 | Hu P C, Wang Y D, Meng X H, et al. Isobutane alkylation with 2-butene catalyzed by amide-AlCl3-based ionic liquid analogues[J]. Fuel, 2017, 189: 203-209. |
15 | Wang H, Meng X Z, Zhao G Y, et al. Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production[J]. Green Chemistry, 2017, 19(6): 1462-1489. |
16 | Hartman R L, McMullen J P, Jensen K F. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis[J]. Angewandte Chemie International Edition, 2011, 50(33): 7502-7519. |
17 | Aschauer S J, Jess A. Effective and intrinsic kinetics of the two-phase alkylation of i-paraffins with olefins using chloroaluminate ionic liquids as catalyst[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16288-16298. |
18 | Zhang J S, Wang K, Teixeira A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8(1): 285-305. |
19 | Günther A, Jensen K F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis[J]. Lab on a Chip, 2006, 6(12): 1487-1503. |
20 | Yoshida J I, Kim H, Nagaki A. Green and sustainable chemical synthesis using flow microreactors[J]. ChemSusChem, 2011, 4(3): 331-340. |
21 | Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
22 | Burns J R, Ramshaw C. Development of a microreactor for chemical production[J]. Chemical Engineering Research and Design, 1999, 77(3): 206-211. |
23 | Yao X J, Zhang Y, Du L Y, et al. Review of the applications of microreactors[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 519-539. |
24 | Su Y H, Zhao Y C, Chen G W, et al. Liquid-liquid two-phase flow and mass transfer characteristics in packed microchannels[J]. Chemical Engineering Science, 2010, 65(13): 3947-3956. |
25 | Dummann G, Quittmann U, Gröschel L, et al. The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions[J]. Catalysis Today, 2003, 79/80: 433-439. |
26 | Li L T, Zhang J S, Wang K, et al. Caprolactam as a new additive to enhance alkylation of isobutane and butene in H2SO4[J]. Industrial & Engineering Chemistry Research, 2016, 55(50): 12818-12824. |
27 | Li L T, Zhang J S, Du C C, et al. Kinetics study of sulfuric acid alkylation of isobutane and butene using a microstructured chemical system[J]. Industrial & Engineering Chemistry Research, 2019, 58(3): 1150-1158. |
28 | Li S W, Xu J H, Wang Y J, et al. Low-temperature bonding of poly-(methyl methacrylate) microfluidic devices under an ultrasonic field[J]. Journal of Micromechanics and Microengineering, 2009, 19(1): 015035. |
29 | Yao C Q, Zhao Y C, Ma H Y, et al. Two-phase flow and mass transfer in microchannels: a review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017. |
30 | Lan W J, Liu D, Guo X Q, et al. Study on liquid-liquid droplet flow separation in a T-shaped microseparator[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12262-12269. |
31 | Qi L, Meng X H, Zhang R, et al. Droplet size distribution and droplet size correlation of chloroaluminate ionic liquid-heptane dispersion in a stirred vessel[J]. Chemical Engineering Journal, 2015, 268: 116-124. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[4] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[5] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[6] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[7] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[8] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[9] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[12] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[13] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[14] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[15] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||