CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4931-4940.DOI: 10.11949/0438-1157.20210001
• Energy and environmental engineering • Previous Articles Next Articles
Yanping JIA1(),Xiaoqian SHAN1,Xiangfei SONG1,Zewei TONG2,Jian ZHANG1,Lanhe ZHANG1()
Received:
2021-01-03
Revised:
2021-04-08
Online:
2021-09-05
Published:
2021-09-05
Contact:
Lanhe ZHANG
贾艳萍1(),单晓倩1,宋祥飞1,佟泽为2,张健1,张兰河1()
通讯作者:
张兰河
作者简介:
贾艳萍(1973—),女,博士,教授,基金资助:
CLC Number:
Yanping JIA, Xiaoqian SHAN, Xiangfei SONG, Zewei TONG, Jian ZHANG, Lanhe ZHANG. Optimization of coagulation process of catering wastewater by response surface methodology[J]. CIESC Journal, 2021, 72(9): 4931-4940.
贾艳萍, 单晓倩, 宋祥飞, 佟泽为, 张健, 张兰河. 响应面法优化餐饮废水混凝工艺研究[J]. 化工学报, 2021, 72(9): 4931-4940.
Add to citation manager EndNote|Ris|BibTeX
废水 | COD/(mg/L) | BOD/(mg/L) | TN/(mg/L) | 浊度/NTU | TP/(mg/L) | 动植物油/(mg/L) | pH | 气味 |
---|---|---|---|---|---|---|---|---|
处理前废水 | 1715±200 | 549±200 | 30.15±5 | 300.1±50 | 2.66±1 | 196±50 | 5.01±1 | 酸臭味 |
预处理后废水 | 1101±200 | 517±200 | 12.86±2 | 21.52±50 | 2.02±1 | 36±15 | 7±1 | 少量酸臭味 |
Table 1 The quality index of catering wastewater
废水 | COD/(mg/L) | BOD/(mg/L) | TN/(mg/L) | 浊度/NTU | TP/(mg/L) | 动植物油/(mg/L) | pH | 气味 |
---|---|---|---|---|---|---|---|---|
处理前废水 | 1715±200 | 549±200 | 30.15±5 | 300.1±50 | 2.66±1 | 196±50 | 5.01±1 | 酸臭味 |
预处理后废水 | 1101±200 | 517±200 | 12.86±2 | 21.52±50 | 2.02±1 | 36±15 | 7±1 | 少量酸臭味 |
BOD/COD | 可生化性 |
---|---|
>0.45 | 较好 |
0.3~0.45 | 可以 |
0.2~0.3 | 较难 |
<0.2 | 不宜 |
Table 2 Evaluation index of wastewater biodegradability
BOD/COD | 可生化性 |
---|---|
>0.45 | 较好 |
0.3~0.45 | 可以 |
0.2~0.3 | 较难 |
<0.2 | 不宜 |
编码 | 因素 | 单位 | 水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
A | 初始pH | ― | 7 | 8 | 9 |
B | FeCl3投加量 | mg/L | 90 | 100 | 110 |
C | 搅拌时间 | s | 20 | 40 | 60 |
D | 沉降时间 | min | 20 | 30 | 40 |
Table 3 The experimental factor and level design for response surface
编码 | 因素 | 单位 | 水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
A | 初始pH | ― | 7 | 8 | 9 |
B | FeCl3投加量 | mg/L | 90 | 100 | 110 |
C | 搅拌时间 | s | 20 | 40 | 60 |
D | 沉降时间 | min | 20 | 30 | 40 |
序号 | 变量取值 | COD去除率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | -1 | 0 | -1 | 0 | 41.91 |
2 | -1 | 0 | 1 | 0 | 41.08 |
3 | 1 | 0 | 1 | 0 | 39.92 |
4 | -1 | 0 | 0 | 1 | 38.92 |
5 | 0 | -1 | 0 | 1 | 35.95 |
6 | 0 | 0 | 0 | 0 | 45.29 |
7 | 0 | 0 | 0 | 0 | 44.50 |
8 | 0 | 0 | 0 | 0 | 44.66 |
9 | -1 | -1 | 0 | 0 | 35.95 |
10 | 1 | 0 | -1 | 0 | 37.30 |
11 | 1 | -1 | 0 | 0 | 37.08 |
12 | 0 | 1 | 0 | 1 | 32.28 |
13 | 0 | -1 | -1 | 0 | 36.21 |
14 | 0 | 0 | 1 | -1 | 43.39 |
15 | 0 | 0 | 1 | 1 | 40.44 |
16 | 0 | 0 | 0 | 0 | 43.91 |
17 | 0 | 0 | 0 | 0 | 45.36 |
18 | 0 | 1 | 0 | -1 | 41.92 |
19 | -1 | 1 | 0 | 0 | 39.84 |
20 | 0 | 1 | 1 | 0 | 38.45 |
21 | 1 | 0 | 0 | 1 | 36.62 |
22 | 0 | -1 | 0 | -1 | 36.49 |
23 | 0 | -1 | 1 | 0 | 38.54 |
24 | -1 | 0 | 0 | -1 | 42.27 |
25 | 1 | 1 | 0 | 0 | 36.51 |
26 | 1 | 0 | 0 | -1 | 38.61 |
27 | 0 | 1 | -1 | 0 | 39.71 |
28 | 0 | 0 | -1 | 1 | 38.29 |
29 | 0 | 0 | -1 | -1 | 40.69 |
Table 4 Experiment design and experimental results of response surface test group
序号 | 变量取值 | COD去除率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | -1 | 0 | -1 | 0 | 41.91 |
2 | -1 | 0 | 1 | 0 | 41.08 |
3 | 1 | 0 | 1 | 0 | 39.92 |
4 | -1 | 0 | 0 | 1 | 38.92 |
5 | 0 | -1 | 0 | 1 | 35.95 |
6 | 0 | 0 | 0 | 0 | 45.29 |
7 | 0 | 0 | 0 | 0 | 44.50 |
8 | 0 | 0 | 0 | 0 | 44.66 |
9 | -1 | -1 | 0 | 0 | 35.95 |
10 | 1 | 0 | -1 | 0 | 37.30 |
11 | 1 | -1 | 0 | 0 | 37.08 |
12 | 0 | 1 | 0 | 1 | 32.28 |
13 | 0 | -1 | -1 | 0 | 36.21 |
14 | 0 | 0 | 1 | -1 | 43.39 |
15 | 0 | 0 | 1 | 1 | 40.44 |
16 | 0 | 0 | 0 | 0 | 43.91 |
17 | 0 | 0 | 0 | 0 | 45.36 |
18 | 0 | 1 | 0 | -1 | 41.92 |
19 | -1 | 1 | 0 | 0 | 39.84 |
20 | 0 | 1 | 1 | 0 | 38.45 |
21 | 1 | 0 | 0 | 1 | 36.62 |
22 | 0 | -1 | 0 | -1 | 36.49 |
23 | 0 | -1 | 1 | 0 | 38.54 |
24 | -1 | 0 | 0 | -1 | 42.27 |
25 | 1 | 1 | 0 | 0 | 36.51 |
26 | 1 | 0 | 0 | -1 | 38.61 |
27 | 0 | 1 | -1 | 0 | 39.71 |
28 | 0 | 0 | -1 | 1 | 38.29 |
29 | 0 | 0 | -1 | -1 | 40.69 |
变差来源 | 平方和 | 自由度 | 均方和 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 295.00 | 14 | 21.07 | 24.98 | <0.0001 | 极显著 |
A | 16.17 | 1 | 16.17 | 19.17 | 0.0006 | 极显著 |
B | 6.01 | 1 | 6.01 | 7.12 | 0.0184 | 显著 |
C | 4.95 | 1 | 4.95 | 5.87 | 0.0295 | 显著 |
D | 36.3 | 1 | 36.30 | 43.03 | <0.0001 | 极显著 |
AB | 4.97 | 1 | 4.97 | 5.90 | 0.0293 | 显著 |
AC | 2.98 | 1 | 2.98 | 3.53 | 0.0813 | 不显著 |
AD | 0.46 | 1 | 0.46 | 0.55 | 0.4713 | 不显著 |
BC | 3.22 | 1 | 3.22 | 3.82 | 0.0709 | 不显著 |
BD | 20.70 | 1 | 20.70 | 24.54 | 0.0002 | 极显著 |
CD | 0.076 | 1 | 0.076 | 0.090 | 0.7690 | 不显著 |
A2 | 50.96 | 1 | 50.96 | 60.41 | <0.0001 | 极显著 |
B2 | 158.15 | 1 | 158.15 | 187.50 | <0.0001 | 极显著 |
C2 | 15.84 | 1 | 15.84 | 18.75 | 0.0007 | 极显著 |
D2 | 51.60 | 1 | 51.60 | 61.17 | <0.0001 | 极显著 |
残差 | 11.81 | 14 | 0.84 | |||
失拟项 | 10.36 | 10 | 1.04 | 2.88 | 0.1598 | 不显著 |
误差 | 1.44 | 4 | 0.36 | |||
合计 | 306.81 | 28 | ||||
标准偏差 | 0.92 | 相关系数 | 0.9615 | |||
平均值 | 39.73 | 校正决定系数 | 0.9230 | |||
变异系数 | 2.31 | 预测相关系数 | 0.7980 | |||
压力系数 | 61.98 | 信噪比 | 16.752 |
Table 5 Variance analysis of COD removal efficiency (response value Y) model
变差来源 | 平方和 | 自由度 | 均方和 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 295.00 | 14 | 21.07 | 24.98 | <0.0001 | 极显著 |
A | 16.17 | 1 | 16.17 | 19.17 | 0.0006 | 极显著 |
B | 6.01 | 1 | 6.01 | 7.12 | 0.0184 | 显著 |
C | 4.95 | 1 | 4.95 | 5.87 | 0.0295 | 显著 |
D | 36.3 | 1 | 36.30 | 43.03 | <0.0001 | 极显著 |
AB | 4.97 | 1 | 4.97 | 5.90 | 0.0293 | 显著 |
AC | 2.98 | 1 | 2.98 | 3.53 | 0.0813 | 不显著 |
AD | 0.46 | 1 | 0.46 | 0.55 | 0.4713 | 不显著 |
BC | 3.22 | 1 | 3.22 | 3.82 | 0.0709 | 不显著 |
BD | 20.70 | 1 | 20.70 | 24.54 | 0.0002 | 极显著 |
CD | 0.076 | 1 | 0.076 | 0.090 | 0.7690 | 不显著 |
A2 | 50.96 | 1 | 50.96 | 60.41 | <0.0001 | 极显著 |
B2 | 158.15 | 1 | 158.15 | 187.50 | <0.0001 | 极显著 |
C2 | 15.84 | 1 | 15.84 | 18.75 | 0.0007 | 极显著 |
D2 | 51.60 | 1 | 51.60 | 61.17 | <0.0001 | 极显著 |
残差 | 11.81 | 14 | 0.84 | |||
失拟项 | 10.36 | 10 | 1.04 | 2.88 | 0.1598 | 不显著 |
误差 | 1.44 | 4 | 0.36 | |||
合计 | 306.81 | 28 | ||||
标准偏差 | 0.92 | 相关系数 | 0.9615 | |||
平均值 | 39.73 | 校正决定系数 | 0.9230 | |||
变异系数 | 2.31 | 预测相关系数 | 0.7980 | |||
压力系数 | 61.98 | 信噪比 | 16.752 |
元素 | 混凝前 | 混凝后 | |||
---|---|---|---|---|---|
质量分数/% | 原子分数/% | 质量分数/% | 原子分数/% | ||
C | 50.30 | 65.27 | 26.51 | 43.01 | |
N | 5.90 | 6.60 | 6.00 | 8.35 | |
O | 10.54 | 10.33 | 10.80 | 13.15 | |
Na | 10.73 | 7.31 | 14.63 | 12.40 | |
Mg | 1.14 | 0.74 | 1.22 | 0.98 | |
Si | 0.67 | 0.37 | 0.99 | 0.69 | |
P | 0.88 | 0.44 | 1.00 | 0.63 | |
S | 3.68 | 1.80 | 2.72 | 1.65 | |
Cl | 13.85 | 6.12 | 24.59 | 13.52 | |
K | 1.37 | 0.55 | 10.05 | 5.01 | |
Ca | 1.21 | 0.47 | 0.63 | 0.31 | |
Fe | — | — | 0.87 | 0.30 |
Table 6 Analysis of surface elements of precipitated solid before and after coagulation
元素 | 混凝前 | 混凝后 | |||
---|---|---|---|---|---|
质量分数/% | 原子分数/% | 质量分数/% | 原子分数/% | ||
C | 50.30 | 65.27 | 26.51 | 43.01 | |
N | 5.90 | 6.60 | 6.00 | 8.35 | |
O | 10.54 | 10.33 | 10.80 | 13.15 | |
Na | 10.73 | 7.31 | 14.63 | 12.40 | |
Mg | 1.14 | 0.74 | 1.22 | 0.98 | |
Si | 0.67 | 0.37 | 0.99 | 0.69 | |
P | 0.88 | 0.44 | 1.00 | 0.63 | |
S | 3.68 | 1.80 | 2.72 | 1.65 | |
Cl | 13.85 | 6.12 | 24.59 | 13.52 | |
K | 1.37 | 0.55 | 10.05 | 5.01 | |
Ca | 1.21 | 0.47 | 0.63 | 0.31 | |
Fe | — | — | 0.87 | 0.30 |
1 | 樊立萍, 苗晓慧. 微生物燃料电池处理餐饮废水及同步发电性能研究[J]. 燃料化学学报, 2014, 42(12): 1506-1512. |
Fan L P, Miao X H. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1506-1512. | |
2 | Katam K, Bhattacharyya D. Comparative study on treatment of kitchen wastewater using a mixed microalgal culture and an aerobic bacterial culture: kinetic evaluation and FAME analysis[J]. Environmental Science and Pollution Research, 2018, 25(21): 20732-20742. |
3 | Dong Y, Safferman S I, Ostahowski J, et al. Enzyme pretreatment of fats, oil and grease from restaurant waste to prolong septic soil treatment system effectiveness[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(1): 55-63. |
4 | 蔡宏镇, 沈忱, 任满年, 等. 环流气浮法处理含油水体工艺[J]. 化工学报, 2015, 66(2): 605-611. |
Cai H Z, Shen C, Ren M N, et al. Loop flotation for oil-containing water treatment[J]. CIESC Journal, 2015, 66(2): 605-611. | |
5 | 尹艳华, 徐复铭, 赵毅, 等. 膜生物反应器处理餐饮废水的初步研究[J]. 应用基础与工程科学学报, 2005, 13(4): 358-365. |
Yin Y H, Xu F M, Zhao Y, et al. The primary study of the membrane bioreactor to treat restaurant wastewater[J]. Journal of Basic Science and Engineering, 2005, 13(4): 358-365. | |
6 | 樊立萍, 郑钰姣, 苗晓慧. 阴极液及溶氧对微生物燃料电池性能的影响[J]. 高校化学工程学报, 2016, 30(2): 491-496. |
Fan L P, Zheng Y J, Miao X H. Effects of catholyte and dissolved oxygen on microbial fuel cell performance[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2): 491-496. | |
7 | 聂丽君, 钟华文, 周如金, 等. 混凝/厌氧/兼氧-好氧膜生物反应器组合新工艺处理制革废水[J]. 化工学报, 2016, 67(9): 3995-4003. |
Nie L J, Zhong H W, Zhou R J, et al. Treatment of tanning wastewater by integrated process consisted of coagulation, anaerobic baffled reactor and anoxic/aerobic-membrane bioreactor[J]. CIESC Journal, 2016, 67(9): 3995-4003. | |
8 | 亓秋波, 高宝玉, 鹿时雨, 等. 混凝预处理大豆蛋白废水实验研究[J]. 中国环境科学, 2014, 34(1): 143-149. |
Qi Q B, Gao B Y, Lu S Y, et al. Pretreatment of soybean protein wastewater by coagulation[J]. China Environmental Science, 2014, 34(1): 143-149. | |
9 | 张兰河, 万洒, 陈子成, 等. 高分子絮凝剂处理高浓度化妆品原料生产废水研究[J]. 化工学报, 2020, 71(8): 3730-3740. |
Zhang L H, Wan S, Chen Z C, et al. Treatment of high-strength wastewater generated in cosmetics raw materials production using polymer flocculants[J]. CIESC Journal, 2020, 71(8): 3730-3740. | |
10 | Dotto J, Fagundes-Klen M R, Veit M T, et al. Performance of different coagulants in the coagulation/flocculation process of textile wastewater[J]. Journal of Cleaner Production, 2019, 208: 656-665. |
11 | 张鹏, 王雨露, 丁文杰, 等. 新型巯基絮凝剂PAM-GSH的合成及除Mn(Ⅱ)性能研究[J]. 化工学报, 2019, 70(5): 1932-1941. |
Zhang P, Wang Y L, Ding W J, et al. Synthesis of new sulfhydryl flocculant PAM-GSH and its performance in removing Mn(Ⅱ)[J]. CIESC Journal, 2019, 70(5): 1932-1941. | |
12 | 方乘, 杨盛, 吴云, 等. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723. |
Fang C, Yang S, Wu Y, et al. Effect of floc surface morphology on membrane pollution prediction[J]. CIESC Journal, 2020, 71(2): 715-723. | |
13 | 王永良, 杨晓玲, 董永霞, 等. pH调整剂对含砷酸性废水中氧化Fe(Ⅱ)共沉淀固砷行为的影响[J]. 化工学报, 2019, 70(9): 3511-3516. |
Wang Y L, Yang X L, Dong Y X, et al. Effect of pH adjustment on immobilization of arsenic by coprecipitation through oxidizing Fe(Ⅱ) in acidic wastewater containing arsenic[J]. CIESC Journal, 2019, 70(9): 3511-3516. | |
14 | Wang W, Yue Q Y, Li R H, et al. Investigating coagulation behavior of chitosan with different Al species dual-coagulants in dye wastewater treatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 423-430. |
15 | Kim Y G, Song J B, Yang D G, et al. Purification of chemical mechanical polishing wastewater via superconducting high gradient magnetic separation system with optimal coagulation process[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1-5. |
16 | 刘永旺, 李星, 杨艳玲, 等. 混凝/吸附预处理对超滤膜过滤特性的影响[J]. 北京理工大学学报, 2014, 34(6): 638-643. |
Liu Y W, Li X, Yang Y L, et al. Effect of coagulation/adsorption pretreatment on ultrafiltration characteristics[J]. Transactions of Beijing Institute of Technology, 2014, 34(6): 638-643. | |
17 | 冯爱辉. 化学混凝-SBR法处理含油废水试验研究[D]. 西安: 长安大学, 2006. |
Feng A H. Experimental research on the oily wastewater treatment by chemical coagulation-SBR process[D]. Xi'an: Chang'an University, 2006. | |
18 | 杨艳. 煤制油低浓度含油废水处理工艺研究[D]. 包头: 内蒙古科技大学, 2011. |
Yang Y. Study on technique for the treatment of coal-to-liquids low denisity oil wastewater[D]. Baotou: Inner Mongolia University of Science & Technology, 2011. | |
19 | Louhichi G, Khouni I, Ghrabi A. Enhanced efficiency of the coagulation/flocculation treatment of vegetable oil refinery wastewater using response surface methodology[C]//Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 2018: 223-226. |
20 | Painmanakul P, Sastaravet P, Lersjintanakarn S, et al. Effect of bubble hydrodynamic and chemical dosage on treatment of oily wastewater by induced air flotation (IAF) process[J]. Chemical Engineering Research and Design, 2010, 88(5/6): 693-702. |
21 | 程华农, 邱娜娜, 岳金彩, 等. 采用响应面法降低湿法氧化脱硫中Na2S2O3生成量[J]. 化工学报, 2020, 71(4): 1762-1771. |
Cheng H N, Qiu N N, Yue J C, et al. Reduction of Na2S2O3 production in wet oxidation desulfurization by response surface method[J]. CIESC Journal, 2020, 71(4): 1762-1771. | |
22 | 唐海, 沙俊鹏, 欧阳龙, 等. Fe(Ⅱ)活化过硫酸盐氧化破解剩余污泥[J]. 化工学报, 2015, 66(2): 785-792. |
Tang H, Sha J P, Ouyang L, et al. Persulfate activated by Fe(Ⅱ) for oxidation and disintegration of excess sludge[J]. CIESC Journal, 2015, 66(2): 785-792. | |
23 | 马艳红, 陆江银, 胡子昭, 等. 响应面法优化制备戊烯/辛烯/十二烯共聚物减阻剂[J]. 化工学报, 2017, 68(5): 2195-2203. |
Ma Y H, Lu J Y, Hu Z Z, et al. Preparation of 1-pentene/1-octene/1-dodecene terpolymer drag reducer by response surface method[J]. CIESC Journal, 2017, 68(5): 2195-2203. | |
24 | 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342. |
Zhu L Y, Wang Y M, Zhou X F. Application of response surface methodology in optimizing electrocatalytic degradation of dye wastewater[J]. CIESC Journal, 2020, 71(3): 1335-1342. | |
25 | 李俊. 预处理-SBR法处理餐饮废水的试验研究[D]. 武汉: 武汉科技大学, 2010. |
Li J. Study on the restaurant wastewater treatment by combined process of pretreatment -SBR[D]. Wuhan: Wuhan University of Science and Technology, 2010. | |
26 | 贾瑞来, 刘吉宝, 魏源送. 基于响应面分析法的微波-过氧化氢-碱预处理污泥水解酸化优化研究[J]. 环境科学学报, 2016, 36(3): 920-931. |
Jia R L, Liu J B, Wei Y S. Response surface methodology for the optimization of hydrolysis and acidification of sludge pretreated by the microwave-H2O2-alkaline process[J]. Acta Scientiae Circumstantiae, 2016, 36(3): 920-931. | |
27 | 胡甜甜, 赵地顺, 武宇, 等. 醚基功能化离子液体催化合成乙酸正丁酯[J]. 化工学报, 2017, 68(1): 136-145. |
Hu T T, Zhao D S, Wu Y, et al. Synthesis of n-butyl acetate by ether-functionalized ionic liquid[J]. CIESC Journal, 2017, 68(1): 136-145. | |
28 | Devi P, Das U, Dalai A K. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems[J]. The Science of the Total Environment, 2016, 571: 643-657. |
29 | 李优平. 钛盐混凝去除无机As(Ⅲ)的实验研究[D]. 西安: 西安建筑科技大学, 2014. |
Li Y P. Removal of inorganic As(Ⅲ) by titanium salt coagulation[D]. Xi'an: Xi'an University of Architecture and Technology, 2014. | |
30 | 王晓娟, 张兴堂, 蒋晓红, 等. β-FeOOH纳米线的自排列及形成机理研究[J]. 高等学校化学学报, 2006, 27(3): 406-409. |
Wang X J, Zhang X T, Jiang X H, et al. Studies on the self-arrangement of β-FeOOH nanowires and the formation mechanism[J]. Chemical Journal of Chinese Universities, 2006, 27(3): 406-409. | |
31 | Wang X M, Liu F, Tan W F, et al. Characteristics of phosphate adsorption-desorption onto ferrihydrite[J]. Soil Science, 2013, 178(1): 1-11. |
32 | 黄潇. 多级AO-深床滤池工艺深度处理城市污水效能及微生物特征[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Huang X. Multistage A/O combined with deep bed filter process treating municipal wastewater: performance and microbial characteristics[D]. Harbin: Harbin Institute of Technology, 2019. | |
33 | 陈凡雨, 徐仲, 尤宏, 等. 缺氧MBR-MMR处理海水养殖废水性能及膜污染特性[J]. 环境科学, 2020, 41(6): 2762-2770. |
Chen F Y, Xu Z, You H, et al. Performance and membrane fouling characteristics of mariculture wastewater treated by anoxic MBR-MMR[J]. Environmental Science, 2020, 41(6): 2762-2770. | |
34 | Ding Y, Tian Y, Li Z P, et al. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor[J]. Bioresource Technology, 2015, 192: 105-114. |
35 | 张兰河, 张明爽, 郭静波, 等. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098. |
Zhang L H, Zhang M S, Guo J B, et al. Transformation of Fe3+ and its effect on anoxic sludge flocculation in A2O process[J]. CIESC Journal, 2019, 70(3): 1089-1098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||