CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6049-6061.DOI: 10.11949/0438-1157.20211075
• Reviews and monographs • Previous Articles Next Articles
Wenjiao XU(),Huaigang CHENG,Fangqin CHENG()
Received:
2021-08-02
Revised:
2021-10-14
Online:
2021-12-22
Published:
2021-12-05
Contact:
Fangqin CHENG
通讯作者:
程芳琴
作者简介:
许文娇(1994—),女,博士研究生,基金资助:
CLC Number:
Wenjiao XU, Huaigang CHENG, Fangqin CHENG. Absorption of low-concentration CO2 by industrial effluents: feasibility and application[J]. CIESC Journal, 2021, 72(12): 6049-6061.
许文娇, 成怀刚, 程芳琴. 工业废液吸收低浓度CO2:可行性及应用[J]. 化工学报, 2021, 72(12): 6049-6061.
Add to citation manager EndNote|Ris|BibTeX
工业废液 | 主要成分 | 实例 | |||
---|---|---|---|---|---|
碱性废液 | 碱液 | OH- | 纺织工业的碱性废液[ 工业生产1,4-丁二醇脱离子工段碱性废液[ | ||
含钙废液 | 含钙碱液 | OH-、Ca2+、Mg2+ | 钢渣堆固废沥滤处理产生的碱性废液[ 工业生产牛皮纸浆产生的含钙污水泥浆[ 电厂粉煤灰沥滤废液[ 工业固废磷石膏沥滤处理产生工业废液[ 混凝土工业产生碱性废液[ 工业电石渣废液上清液[ 皮革厂产生的浸灰泥浆废水[ 水泥窑粉尘悬浊废液[ 城市垃圾焚烧底灰[ 电厂油页岩灰产生的工业废液[ | ||
钙液 | Ca2+、醇胺吸收剂(外加) | 盐业公司生产的工业废液[ 海水工业废液[ | |||
微生物可转化废液 | 微生物可转化钙液 | Ca2+、NO | 炼钢厂排放的废水[ 制革污水 [ 木浆造纸工业废水[ | ||
微生物可转化废液 | NO | 炼油污水 [ 地毯厂废水 [ 牛奶加工废水[ |
Table 1 Classification, main components and examples of industrial waste water that can absorb CO2
工业废液 | 主要成分 | 实例 | |||
---|---|---|---|---|---|
碱性废液 | 碱液 | OH- | 纺织工业的碱性废液[ 工业生产1,4-丁二醇脱离子工段碱性废液[ | ||
含钙废液 | 含钙碱液 | OH-、Ca2+、Mg2+ | 钢渣堆固废沥滤处理产生的碱性废液[ 工业生产牛皮纸浆产生的含钙污水泥浆[ 电厂粉煤灰沥滤废液[ 工业固废磷石膏沥滤处理产生工业废液[ 混凝土工业产生碱性废液[ 工业电石渣废液上清液[ 皮革厂产生的浸灰泥浆废水[ 水泥窑粉尘悬浊废液[ 城市垃圾焚烧底灰[ 电厂油页岩灰产生的工业废液[ | ||
钙液 | Ca2+、醇胺吸收剂(外加) | 盐业公司生产的工业废液[ 海水工业废液[ | |||
微生物可转化废液 | 微生物可转化钙液 | Ca2+、NO | 炼钢厂排放的废水[ 制革污水 [ 木浆造纸工业废水[ | ||
微生物可转化废液 | NO | 炼油污水 [ 地毯厂废水 [ 牛奶加工废水[ |
1 | Wang J Y, Huang L, Yang R Y, et al. Recent advances in solid sorbents for CO2 capture and new development trends[J]. Energy & Environmental Science, 2014, 7(11): 3478-3518. |
2 | Sanz-Pérez E S, Murdock C R, Didas S A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19): 11840-11876. |
3 | Zhang L, Zhao Z J, Gong J L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie International Edition, 2017, 56(38): 11326-11353. |
4 | 林海周, 罗海中, 裴爱国, 等. 燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析[J]. 化工进展, 2019, 38(4): 2046-2055. |
Lin H Z, Luo H Z, Pei A G, et al. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2046-2055. | |
5 | Hamouda A S, Eldien M S, Abadir M F. Carbon dioxide capture by ammonium hydroxide solution and its possible application in cement industry[J]. Ain Shams Engineering Journal, 2020, 11(4): 1061-1067. |
6 | Ma'mun S. Amino-acid-salt-based carbon dioxide capture: precipitation behavior of potassium sarcosine solution[J]. IOP Conference Series: Materials Science and Engineering, 2020, 811: 012033. |
7 | Zhan X H, Lv B, Yang K X, et al. Dual-functionalized ionic liquid biphasic solvent for carbon dioxide capture: high-efficiency and energy saving[J]. Environmental Science & Technology, 2020, 54(10): 6281-6288. |
8 | Lombardo L, Yang H, Zhao K, et al. Solvent- and catalyst-free carbon dioxide capture and reduction to formate with borohydride ionic liquid[J]. ChemSusChem, 2020, 13(8): 2025-2031. |
9 | Ding M, Flaig R W, Jiang H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
10 | Khan J, Iqbal N, Asghar A, et al. Novel amine functionalized metal organic framework synthesis for enhanced carbon dioxide capture[J]. Materials Research Express, 2019, 6(10): 105539. |
11 | Valverde J M. Ca-based synthetic materials with enhanced CO2 capture efficiency[J]. Journal of Materials Chemistry A, 2013, 1(3): 447-468. |
12 | Mosaffa A H, Farshi L G. Novel post combustion CO2 capture in the coal-fired power plant employing a transcritical CO2 power generation and low temperature steam upgraded by an absorption heat transformer[J]. Energy Conversion and Management, 2020, 207: 112542. |
13 | Iasimone F, De Felice V, Panico A, et al. Experimental study for the reduction of CO2 emissions in wastewater treatment plant using microalgal cultivation[J]. Journal of CO2 Utilization, 2017, 22: 1-8. |
14 | Gaur A, Park J W, Jang J H, et al. Characteristics of alkaline wastewater neutralization for CO2 capture from landfill gas (LFG)[J]. Energy & Fuels, 2009, 23(11): 5467-5473. |
15 | Bove P, Claveau-Mallet D, Boutet É, et al. Development and modelling of a steel slag filter effluent neutralization process with CO2-enriched air from an upstream bioprocess[J]. Water Research, 2018, 129: 11-19. |
16 | Ferreira A, Ribeiro B, Marques P A S S, et al. Scenedesmus obliquus mediated brewery wastewater remediation and CO2 biofixation for green energy purposes[J]. Journal of Cleaner Production, 2017, 165: 1316-1327. |
17 | Mayes W M, Younger P L, Aumônier J. Buffering of alkaline steel slag leachate across a natural wetland[J]. Environmental Science & Technology, 2006, 40(4): 1237-1243. |
18 | Yang L, Liu S, Yu L. Removing CO2 and H2S from the gas produced during underground coal gasification (UCG)[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2007, 29(10): 915-929. |
19 | Kim I, Yoo Y, Son J, et al. Two-step mineral carbonation using seawater-based industrial wastewater: an eco-friendly carbon capture, utilization, and storage process[J]. Journal of Material Cycles and Waste Management, 2020, 22(2): 333-347. |
20 | Yoo Y, Kang D, Kim I, et al. Characteristics of metal cation carbonation and carbon dioxide utilization using seawater-based industrial wastewater[J]. ChemistrySelect, 2018, 3(32): 9284-9292. |
21 | Kang D, Yoo Y, Park J, et al. Chemical conversion of carbon dioxide via target metal separation using seawater-derived wastewater[J]. ChemistrySelect, 2018, 3(30): 8628-8636. |
22 | Dindi A, Quang D V, Abu-Zahra M R M. Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine[J]. Applied Energy, 2015, 154: 298-308. |
23 | Najib M Z M, Salmiati, Ujang Z, et al. Reduction and biofixation of carbon dioxide in palm oil mill effluent using developed microbial granules containing photosynthetic pigments[J]. Bioresource Technology, 2016, 221: 157-164. |
24 | Alamdari A, Alamdari A, Mowla D. Kinetics of calcium carbonate precipitation through CO2 absorption from flue gas into distiller waste of soda ash plant[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3480-3486. |
25 | Ferreira Filho E A, Chui Q S H. Qualidade de medições e neutralização de efluentes alcalinos com dióxido de carbono[J]. Engenharia Sanitaria e Ambiental, 2006, 11(2): 169-174. |
26 | Pérez-López R, Castillo J, Quispe D, et al. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 762-772. |
27 | 董良宇, 曹鹏. 碱性工业废水吸收二氧化碳调节pH值的研究[J]. 广东化工, 2019, 46(20): 12-14. |
Dong L Y, Cao P. Study on pH adjustment of alkaline industrial wastewater by absorbing carbon dioxide[J]. Guangdong Chemical Industry, 2019, 46(20): 12-14. | |
28 | Cárdenas-Escudero C, Morales-Flórez V, Pérez-López R, et al. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration[J]. Journal of Hazardous Materials, 2011, 196: 431-435. |
29 | Kang D, Lee M G, Jo H, et al. Carbon capture and utilization using industrial wastewater under ambient conditions[J]. Chemical Engineering Journal, 2017, 308: 1073-1080. |
30 | Eloneva S, Teir S, Salminen J, et al. Fixation of CO2 by carbonating calcium derived from blast furnace slag[J]. Energy, 2008, 33(9): 1461-1467. |
31 | 王晓龙, 万超然, 郜时旺, 等. 粉煤灰CO2矿化利用溶出实验[J]. 电力建设, 2014, 35(7): 58-62. |
Wang X L, Wan C R, Gao S W, et al. Dissolution test on CO2 mineralization by fly ash[J]. Electric Power Construction, 2014, 35(7): 58-62. | |
32 | Sun Y, Yao M S, Zhang J P, et al. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution[J]. Chemical Engineering Journal, 2011, 173(2): 437-445. |
33 | Judd S, van den Broeke L J P, Shurair M, et al. Algal remediation of CO2 and nutrient discharges: a review[J]. Water Research, 2015, 87: 356-366. |
34 | Yoo J, Shin H, Ji S. An eco-friendly neutralization process by carbon mineralization for Ca-rich alkaline wastewater generated from concrete sludge[J]. Metals, 2017, 7(9): 371. |
35 | 帅欢, 王丽娟, 李男, 等. 电石渣制备纳米碳酸钙中浸出与碳化工艺研究[J]. 非金属矿, 2018, 41(5): 4-6. |
Shuai H, Wang L J, Li N, et al. Study on leaching and carbonization process of preparation of nano calcium carbonate from calcium carbide slag[J]. Non-Metallic Mines, 2018, 41(5): 4-6. | |
36 | Ecke H, Menad N, Lagerkvist A. Carbonation of municipal solid waste incineration fly ash and the impact on metal mobility[J]. Journal of Environmental Engineering, 2003, 129(5): 435-440. |
37 | Venkatakrishnan B, Sandhya K V, Abinandan S, et al. Fixation of carbon dioxide and optimization of liming process waste produced in tanneries using response surface methodology[J]. Journal of Cleaner Production, 2019, 209: 855-861. |
38 | Huntzinger D N, Gierke J S, Sutter L L, et al. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles[J]. Journal of Hazardous Materials, 2009, 168(1): 31-37. |
39 | Arickx S, van Gerven T, Vandecasteele C. Accelerated carbonation for treatment of MSWI bottom ash[J]. Journal of Hazardous Materials, 2006, 137(1): 235-243. |
40 | Uibu M, Uus M, Kuusik R. CO2 mineral sequestration in oil-shale wastes from Estonian power production[J]. Journal of Environmental Management, 2009, 90(2): 1253-1260. |
41 | Noack C W, Dzombak D A, Nakles D V, et al. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study[J]. Waste Management, 2014, 34(10): 1815-1822. |
42 | Saranya D, Shanthakumar S. Opportunities for phycoremediation approach in tannery effluent: a treatment perspective[J]. Environmental Progress & Sustainable Energy, 2019, 38(3): e13078. |
43 | Yun Y S, Lee S B, Park J M, et al. Carbon dioxide fixation by algal cultivation using wastewater nutrients[J]. Journal of Chemical Technology & Biotechnology, 1997, 69(4): 451-455. |
44 | Lacerda L M C F, Queiroz M I, Furlan L T, et al. Improving refinery wastewater for microalgal biomass production and CO2 biofixation: predictive modeling and simulation[J]. Journal of Petroleum Science and Engineering, 2011, 78(3/4): 679-686. |
45 | Tarlan E, Dilek F B, Yetis U. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater[J]. Bioresource Technology, 2002, 84(1): 1-5. |
46 | Chang W T, Lee M, Den W. Simultaneous carbon capture, biomass production, and diary wastewater purification by spirulina maxima photobioreaction[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2046-2055. |
47 | Chinnasamy S, Bhatnagar A, Hunt R W, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications[J]. Bioresource Technology, 2010, 101(9): 3097-3105. |
48 | Lackner K S. A guide to CO2 sequestration[J]. Science, 2003, 300(5626): 1677-1678. |
49 | Baciocchi R, Costa G, Di Bartolomeo E, et al. The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues[J]. Waste Management, 2009, 29(12): 2994-3003. |
50 | Wine R, Morrison R. Effective use of carbon dioxide for pH control in utility service and waste waters[C]//Proceedings of the American Power Conference. Illinois Institute of Technology, 1986: 1042-1045. |
51 | 应宝华. 利用二氧化碳降低碱性废水pH值工艺实践[J]. 现代冶金, 2011, 39(6): 28-31. |
Ying B H. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium[J]. Modern Metallurgy, 2011, 39(6): 28-31. | |
52 | Feng Y J, Li C, Zhang D W. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium[J]. Bioresource Technology, 2011, 102(1): 101-105. |
53 | 应宝华. 二氧化碳处理法在钢铁工业废水处理回用中的应用[J]. 现代冶金, 2012, 40(2): 37-39. |
Ying B H. Application of carbon dioxide treatment method in wastewater treatment and reuse in iron and steel industry[J]. Modern Metallurgy, 2012, 40(2): 37-39. | |
54 | Pan S Y, Chiang P C, Chen Y H, et al. Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed[J]. Environmental Science & Technology, 2013, 47(7): 3308-3315. |
55 | Costa G, Baciocchi R, Polettini A, et al. Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues[J]. Environmental Monitoring and Assessment, 2007, 135(1/2/3): 55-75. |
56 | Huntzinger D N, Gierke J S, Kawatra S K, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation[J]. Environmental Science & Technology, 2009, 43(6): 1986-1992. |
57 | Uibu M, Kuusik R. Mineral trapping of CO2via oil shale ash aqueous carbonation: controlling mechanism of process rate and development of continuous-flow reactor system[J]. Oil Shale, 2009, 26(1): 40-58. |
58 | Huijgen W J J, Witkamp G J, Comans R N J. Mineral CO2 sequestration by steel slag carbonation[J]. Environmental Science & Technology, 2005, 39(24): 9676-9682. |
59 | Kodama S, Nishimoto T, Yamamoto N, et al. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution[J]. Energy, 2008, 33(5): 776-784. |
60 | Chuajiw W, Nakano M, Takatori K, et al. Effects of amine, amine salt and amide on the behaviour of carbon dioxide absorption into calcium hydroxide suspension to precipitate calcium carbonate[J]. Journal of Environmental Sciences, 2013, 25(12): 2507-2515. |
61 | 贺翩翩, 刘晓静, 范勇, 等. 磷石膏固碳制备CaCO3的实验研究[J]. 非金属矿, 2015, 38(2): 28-30. |
He P P, Liu X J, Fan Y, et al. Study on the preparation of CaCO3 by phosphogypsum solid carbon through orthogonal experiment[J]. Non-Metallic Mines, 2015, 38(2): 28-30. | |
62 | Wang B, Pan Z H, Du Z P, et al. Effect of impure components in flue gas desulfurization (FGD) gypsum on the generation of polymorph CaCO3 during carbonation reaction[J]. Journal of Hazardous Materials, 2019, 369: 236-243. |
63 | Gajda I, Greenman J, Melhuish C, et al. Microbial fuel cell-driven caustic potash production from wastewater for carbon sequestration[J]. Bioresource Technology, 2016, 215: 285-289. |
64 | Narasimhan A. Microalgal bioremediation of nutrients in wastewater and carbon dioxide in flue gas[J]. Fuel, 2010, 68(8):1079-1081. |
65 | Huang B, Marchand J, Thiriet-Rupert S, et al. Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta)[J]. Algal Research, 2019, 40: 101506. |
66 | Chisti Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306. |
67 | Ma F R, Hanna M A. Biodiesel production: a review[J]. Bioresource Technology, 1999, 70(1): 1-15. |
68 | Shen Y F. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production[J]. RSC Advances, 2014, 4(91): 49672-49722. |
69 | Acién Fernández F G, González-López C V, Fernández Sevilla J M, et al. Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? [J]. Applied Microbiology and Biotechnology, 2012, 96(3): 577-586. |
70 | Huijgen W J, Comans R N. Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms[J]. Environmental Science & Technology, 2006, 40(8): 2790-2796. |
71 | Hussain S I, Blowes D W, Ptacek C J, et al. Phosphorus removal from lake water using basic oxygen furnace slag: system performance and characterization of reaction products[J]. Environmental Engineering Science, 2014, 31(11): 631-642. |
72 | 王雷, 陈启, 高鹤华, 等. 高碱性废液中CO2曝气Cu的混合沉淀特性[J]. 沈阳航空航天大学学报, 2016, 33(1): 60-64. |
Wang L, Chen Q, Gao H H, et al. Mixed precipitation characteristics of Cu in high alkaline waste by CO2 bubbling[J]. Journal of Shenyang Aerospace University, 2016, 33(1): 60-64. | |
73 | Praveen P, Xiao W, Lamba B, et al. Low-retention operation to enhance biomass productivity in an algal membrane photobioreactor[J]. Algal Research, 2019, 40: 101487. |
74 | Sheng M P, Xie C X, Sun B C, et al. Effective mass transfer area measurement using a CO2-NaOH system: impact of different sources of kinetics models and physical properties[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 11082-11092. |
75 | Huang Y, Huang Y, Liao Q, et al. Improving phosphorus removal efficiency and Chlorella vulgaris growth in high-phosphate MFC wastewater by frequent addition of small amounts of nitrate[J]. International Journal of Hydrogen Energy, 2017, 42(45): 27749-27758. |
76 | 李磊, 张红兵, 李文涛, 等. 光生物反应器培养微藻研究进展[J]. 生物技术进展, 2020, 10(2): 117-123. |
Li L, Zhang H B, Li W T, et al. Progress on photobioreactors for microalgae cultivation[J]. Current Biotechnology, 2020, 10(2): 117-123. | |
77 | Iizuka A, Fujii M, Yamasaki A, et al. Development of a new CO2 sequestration process utilizing the carbonation of waste cement[J]. Industrial & Engineering Chemistry Research, 2004, 43(24): 7880-7887. |
78 | Park A H A, Fan L S. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process[J]. Chemical Engineering Science, 2004, 59(22/23): 5241-5247. |
79 | Dabas N, Yadav K K, Ganguli A K, et al. New process for conversion of hazardous industrial effluent of ceramic industry into nanostructured sodium carbonate and their application in textile industry[J]. Journal of Environmental Management, 2019, 240: 352-358. |
80 | Costa J A V, de Morais M G. The role of biochemical engineering in the production of biofuels from microalgae[J]. Bioresource Technology, 2011, 102(1): 2-9. |
81 | Znad H, Naderi G, Ang H M, et al. CO2 biomitigation and biofuel production using microalgae: photobioreactors developments and future directions[M]//Advances in Chemical Engineering. Croatia: InTech, 2012: 229-244.. |
82 | Gordon J M, Polle J E W. Ultrahigh bioproductivity from algae[J]. Applied Microbiology and Biotechnology, 2007, 76(5): 969-975. |
83 | Demirbas A, Fatih Demirbas M. Importance of algae oil as a source of biodiesel[J]. Energy Conversion and Management, 2011, 52(1): 163-170. |
84 | Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
85 | Gebreslassie B H, Waymire R, You F Q. Sustainable design and synthesis of algae-based biorefinery for simultaneous hydrocarbon biofuel production and carbon sequestration[J]. AIChE Journal, 2013, 59(5): 1599-1621. |
86 | Polettini A, Pomi R, Stramazzo A. CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects[J]. Journal of Environmental Management, 2016, 167: 185-195. |
87 | 于成烈. 用废气CO2处理乙烯生产中的废碱液[J]. 石油化工, 1984, 13(6): 405-410. |
Yu C L. Treatment of waste lye in ethylene production with waste gas CO2[J]. Petrochemical Technology, 1984, 13(6): 405-410. | |
88 | SundarRajan P, Gopinath K P, Greetham D, et al. A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system[J]. Journal of Cleaner Production, 2019, 210: 445-458. |
89 | 马铭婧, 郗凤明, 王娇月, 等. 高炉渣CO2矿化利用技术的生命周期碳排放与成本评价[J]. 生态学杂志, 2020, 39(6): 2097-2105. |
Ma M J, Xi F M, Wang J Y, et al. Life cycle carbon emissions and cost assessment of CO2 mineralization and utilization technology by means of blast furnace slag[J]. Chinese Journal of Ecology, 2020, 39(6): 2097-2105. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[7] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[8] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[9] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[10] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[11] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[14] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[15] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||