CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 97-109.DOI: 10.11949/0438-1157.20211241
• Reviews and monographs • Previous Articles Next Articles
Shanshan FENG1(),Xiaobin LIU1,Shilin GUO1,Bingbing HE2,Zhenguo GAO1(),Mingyang CHEN1(),Junbo GONG1,3
Received:
2021-08-26
Revised:
2021-09-30
Online:
2022-01-18
Published:
2022-01-05
Contact:
Zhenguo GAO,Mingyang CHEN
丰闪闪1(),刘晓斌1,郭石麟1,何兵兵2,高振国1(),陈明洋1(),龚俊波1,3
通讯作者:
高振国,陈明洋
作者简介:
丰闪闪(1997—),女,硕士研究生,基金资助:
CLC Number:
Shanshan FENG, Xiaobin LIU, Shilin GUO, Bingbing HE, Zhenguo GAO, Mingyang CHEN, Junbo GONG. Nucleation, growth and inhibition of lithium dendrites[J]. CIESC Journal, 2022, 73(1): 97-109.
丰闪闪, 刘晓斌, 郭石麟, 何兵兵, 高振国, 陈明洋, 龚俊波. 锂枝晶的成核、生长与抑制[J]. 化工学报, 2022, 73(1): 97-109.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 Summary of the driving forces, influencing factors and physical fields of the formation of whisker-like, mossy-like and tree-like lithium dendrites
1 | Palacín M R, de Guibert A. Why do batteries fail? [J]. Science, 2016, 351(6273): 1253292. |
2 | Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 1-16. |
3 | Janek J, Zeier W G. A solid future for battery development[J]. Nature Energy, 2016, 1(9): 1-4. |
4 | Zhai P Y, Peng H J, Cheng X B, et al. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries[J]. Energy Storage Materials, 2017, 7: 56-63. |
5 | Sun Y M, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 1-12. |
6 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
7 | Liu B, Zhang J G, Xu W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845. |
8 | Shen X, Liu H, Cheng X B, et al. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175. |
9 | Tan S J, Yue J P, Hu X C, et al. Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie International Edition, 2019, 58(23): 7802-7807. |
10 | Li L L, Li S Y, Lu Y Y. Suppression of dendritic lithium growth in lithium metal-based batteries[J]. Chemical Communications (Cambridge, England), 2018, 54(50): 6648-6661. |
11 | Han Y H, Jie Y L, Huang F Y, et al. Enabling stable lithium metal anode through electrochemical kinetics manipulation[J]. Advanced Functional Materials, 2019, 29(46): 1904629. |
12 | Tikekar M D, Choudhury S, Tu Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: 16114. |
13 | Sacci R L, Dudney N J, More K L, et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy[J]. Chemical Communications, 2014, 50(17): 2104. |
14 | Stark J K, Ding Y, Kohl P A. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium[J]. Journal of the Electrochemical Society, 2013, 160(9): D337-D342. |
15 | Chen X R, Yao Y X, Yan C, et al. A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries[J]. Angewandte Chemie, 2020, 132(20): 7817-7821. |
16 | Zou P, Sui Y, Zhan H, et al. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields[J]. Chemical Reviews, 2021, 121(10): 5986-6056. |
17 | Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261: 112-119. |
18 | Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536. |
19 | Park M S, Ma S B, Lee D J, et al. A highly reversible lithium metal anode[J]. Scientific Reports, 2014, 4: 3815. |
20 | Lin D, Liu Y, Li Y, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019, 11(4): 382-389. |
21 | Wang Z, Sun Z, Li J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes[J]. Chemical Society Reviews, 2021, 50(5): 3178-3210. |
22 | Sand H J S. III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 1(1): 45-79. |
23 | Fleury V, Chazalviel J N, Rosso M, et al. The role of the anions in the growth speed of fractal electrodeposits[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 290(1/2): 249-255. |
24 | Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367. |
25 | Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3(3): 227-235. |
26 | Kushima A, So K P, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. |
27 | Bai P, Guo J Z, Wang M, et al. Interactions between lithium growths and nanoporous ceramic separators[J]. Joule, 2018, 2(11): 2434-2449. |
28 | Liu H, Cheng X B, Jin Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. Energy Chem, 2019, 1(1): 100003. |
29 | Jana A, García R E. Lithium dendrite growth mechanisms in liquid electrolytes[J]. Nano Energy, 2017, 41: 552-565. |
30 | Shen X, Zhang R, Shi P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
31 | Yun Q B, He Y B, Lv W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939. |
32 | Gao M D, Li H, Xu L, et al. Lithium metal batteries for high energy density: fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687. |
33 | Aryanfar A, Brooks D J, Colussi A J, et al. Thermal relaxation of lithium dendrites[J]. Physical Chemistry Chemical Physics, 2015, 17(12): 8000-8005. |
34 | Li L, Basu S, Wang Y, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383): 1513-1516. |
35 | Jones B. Review of aragonite and calcite crystal morphogenesis in thermal spring systems[J]. Sedimentary Geology, 2017, 354: 9-23. |
36 | Jones B, Renaut R W, et al. Noncrystallographic calcite dendrites from hot-spring deposits at lake bogoria, Kenya[J]. Journal of Sedimentary Research, 1995, 65A: 154-169. |
37 | Zhao C L, Lu Y X, Yue J M, et al. Advanced Na metal anodes[J]. Journal of Energy Chemistry, 2018, 27(6): 1584-1596. |
38 | Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
39 | Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73. |
40 | Xu X L, Wang H, Xie Y Z, et al. Graphitized mesoporous carbon derived from ZIF-8 for suppressing sulfation in lead acid battery and dendritic lithium formation in lithium ion battery[J]. Journal of the Electrochemical Society, 2018, 165(13): A2978-A2984. |
41 | Fang C C, Li J X, Zhang M H, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515. |
42 | Rong G L, Zhang X Y, Zhao W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution[J]. Advanced Materials, 2017, 29(13): 1606187. |
43 | Zeng Z, Liang W I, Liao H G, et al. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries viain situ TEM[J]. Nano Letters, 2014, 14(4): 1745-1750. |
44 | Deng Z, Lin X, Huang Z Y, et al. Recent progress on advanced imaging techniques for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000806. |
45 | Ebner M, Marone F, Stampanoni M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716-720. |
46 | Yu S H, Huang X, Brock J D, et al. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study[J]. Journal of the American Chemical Society, 2019, 141(21): 8441-8449. |
47 | Chandrashekar S, Trease N M, Chang H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium[J]. Nature Materials, 2012, 11(4): 311-315. |
48 | Ma L B, Cui J, Yao S S, et al. Dendrite-free lithium metal and sodium metal batteries[J]. Energy Storage Materials, 2020, 27: 522-554. |
49 | Chang H J, Ilott A J, Trease N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. Journal of the American Chemical Society, 2015, 137(48): 15209-15216. |
50 | Nishikawa K, Mori T, Nishida T, et al. Li dendrite growth and Li+ ionic mass transfer phenomenon[J]. Journal of Electroanalytical Chemistry, 2011, 661(1): 84-89. |
51 | Li B, Wang Y, Yang S B. A material perspective of rechargeable metallic lithium anodes[J]. Advanced Energy Materials, 2018, 8(13): 1702296. |
52 | Cheng X B, Hou T Z, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895. |
53 | Liang Z, Zheng G, Liu C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916. |
54 | Matsuda S, Kubo Y, Uosaki K, et al. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries[J]. ACS Energy Letters, 2017, 2(4): 924-929. |
55 | Bai S Y, Sun Y, Yi J, et al. High-power Li-metal anode enabled by metal-organic framework modified electrolyte[J]. Joule, 2018, 2(10): 2117-2132. |
56 | Lu L L, Zhang Y, Pan Z, et al. Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance[J]. Energy Storage Materials, 2017, 9: 31-38. |
57 | Liang Z, Lin D C, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. PNAS, 2016, 113(11): 2862-2867. |
58 | Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. |
59 | Li Y J, Jiao J Y, Bi J P, et al. Controlled deposition of Li metal[J]. Nano Energy, 2017, 32: 241-246. |
60 | Wu S L, Zhang Z Y, Lan M H, et al. Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes[J]. Advanced Materials, 2018, 30(9): 1705830. |
61 | Zhang Y, Luo W, Wang C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. PNAS, 2017, 114(14): 3584-3589. |
62 | Zhang C, Lv W, Zhou G M, et al. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(21): 1703404. |
63 | Liu Y, Li B, Liu J H, et al. Pre-planted nucleation seeds for rechargeable metallic lithium anodes[J]. Journal of Materials Chemistry A, 2017, 5(35): 18862-18869. |
64 | Yan K, Lu Z D, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1: 16010. |
65 | Yang C P, Yao Y G, He S M, et al. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode[J]. Advanced Materials, 2017, 29(38): 1702714. |
66 | Cheng X B, Zhao M Q, Chen C, et al. Nanodiamonds suppress the growth of lithium dendrites[J]. Nature Communications, 2017, 8(1): 336. |
67 | Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11): 2155-2162. |
68 | Cheng X B, Peng H J, Huang J Q, et al. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries[J]. ACS Nano, 2015, 9(6): 6373-6382. |
69 | Zuo T T, Wu X W, Yang C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Advanced Materials, 2017, 29(29): 1700389. |
70 | Cheng X B, Peng H J, Huang J Q, et al. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014, 10(21): 4257-4263. |
71 | Heine J, Rodehorst U, Qi X, et al. Using polyisobutylene as a non-fluorinated binder for coated lithium powder (CLiP) electrodes[J]. Electrochimica Acta, 2014, 138: 288-293. |
72 | Park J, Jeong J, Lee Y, et al. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries[J]. Advanced Materials Interfaces, 2016, 3(11): 1600140. |
73 | Ryou M H, Lee Y M, Lee Y, et al. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating[J]. Advanced Functional Materials, 2015, 25(6): 834-841. |
74 | Hao X M, Zhu J, Jiang X, et al. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators[J]. Nano Letters, 2016, 16(5): 2981-2987. |
75 | Lee H, Lee D J, Kim Y J, et al. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries[J]. Journal of Power Sources, 2015, 284: 103-108. |
76 | Moon G H, Kim H J, Chae I S, et al. An artificial solid interphase with polymers of intrinsic microporosity for highly stable Li metal anodes[J]. Chemical Communications, 2019, 55(44): 6313-6316. |
77 | Zhu B, Jin Y, Hu X Z, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2017, 29(2): 1603755. |
78 | Qi L Y, Shang L R, Wu K, et al. An interfacial layer based on polymers of intrinsic microporosity to suppress dendrite growth on Li metal anodes[J]. Chemistry-A European Journal, 2019, 25(52): 12052-12057. |
79 | Yan K, Lee H W, Gao T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode[J]. Nano Letters, 2014, 14(10): 6016-6022. |
80 | Li N W, Yin Y X, Yang C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858. |
81 | Zheng G Y, Wang C, Pei A, et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating[J]. ACS Energy Letters, 2016, 1(6): 1247-1255. |
82 | Liu K, Pei A, Lee H R, et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer[J]. Journal of the American Chemical Society, 2017, 139(13): 4815-4820. |
83 | Tikekar M D, Archer L A, Koch D L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions[J]. Journal of the Electrochemical Society, 2014, 161(6): A847-A855. |
84 | Tu Z, Nath P, Lu Y, et al. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries[J]. Accounts of Chemical Research, 2015, 48(11): 2947-2956. |
85 | Lu Y Y, Das S K, Moganty S S, et al. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries[J]. Advanced Materials, 2012, 24(32): 4430-4435. |
86 | Choudhury S, Mangal R, Agrawal A, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communications, 2015, 6: 10101. |
87 | Li Y, Wong K W, Ng K M. Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries[J]. Chemical Communications, 2016, 52(23): 4369-4372. |
88 | Zhao C Z, Zhang X Q, Cheng X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074. |
89 | Wang Z X, Sun C G, Shi Y, et al. A salt-derived solid electrolyte interphase by electroreduction of water-in-salt electrolyte for uniform lithium deposition[J]. Journal of Power Sources, 2019, 439: 227073. |
90 | Xiao J. How lithium dendrites form in liquid batteries[J]. Science, 2019, 366(6464): 426-427. |
[1] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[2] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[3] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[4] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[5] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[6] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[7] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[8] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[9] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[10] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[11] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[12] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[13] | Yinning ZHANG, Jinqing WANG, Zhi FENG, Mingxiu ZHAN, Xu XU, Guangxue ZHANG, Zuohe CHI. Growth and coalescence behavior of bubbles in porous media under heating condition [J]. CIESC Journal, 2023, 74(4): 1509-1518. |
[14] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[15] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||