CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 904-913.DOI: 10.11949/0438-1157.20211287
• Energy and environmental engineering • Previous Articles Next Articles
Yanshan WANG(),Xiaochao ZHU,Yingjin SONG(),Yihang LI
Received:
2021-09-07
Revised:
2021-11-25
Online:
2022-02-18
Published:
2022-02-05
Contact:
Yingjin SONG
通讯作者:
宋英今
作者简介:
王燕杉(1993—),女,博士研究生,基金资助:
CLC Number:
Yanshan WANG, Xiaochao ZHU, Yingjin SONG, Yihang LI. Study on anaerobic digestion pretreatment coupled with hydrothermal carbonization of grass[J]. CIESC Journal, 2022, 73(2): 904-913.
王燕杉, 朱小超, 宋英今, 李易航. 草屑厌氧消化预处理耦合水热炭化研究[J]. 化工学报, 2022, 73(2): 904-913.
Add to citation manager EndNote|Ris|BibTeX
参数 | 草 | 接种污泥 |
---|---|---|
TS/% | 97.39 ± 0.50 | 2.65 ± 0.30 |
VS/% | 85.66 ± 0.40 | 1.53 ± 0.40 |
C/% | 39.40 | 23.72 |
N/% | 2.68 | 3.70 |
H/% | 7.69 | 5.02 |
S/% | 0.10 | 0.63 |
Table 1 Properties of the feedstock and inoculum
参数 | 草 | 接种污泥 |
---|---|---|
TS/% | 97.39 ± 0.50 | 2.65 ± 0.30 |
VS/% | 85.66 ± 0.40 | 1.53 ± 0.40 |
C/% | 39.40 | 23.72 |
N/% | 2.68 | 3.70 |
H/% | 7.69 | 5.02 |
S/% | 0.10 | 0.63 |
样品 | 比表面积/ (m2·g-1) | 平均孔径/nm | 总孔体积/ (cm3·g-1) |
---|---|---|---|
G-230 | 23.98 | 6.21 | 0.037 |
ADG-7d-230 | 34.46 | 7.78 | 0.067 |
ADG-14d-230 | 27.28 | 11.84 | 0.076 |
ADG-21d-230 | 54.41 | 20.55 | 0.280 |
ADG-28d-230 | 44.82 | 21.87 | 0.25 |
Table 2 SSA and pore structure parameters of hydrochar pretreated and untreated with AD
样品 | 比表面积/ (m2·g-1) | 平均孔径/nm | 总孔体积/ (cm3·g-1) |
---|---|---|---|
G-230 | 23.98 | 6.21 | 0.037 |
ADG-7d-230 | 34.46 | 7.78 | 0.067 |
ADG-14d-230 | 27.28 | 11.84 | 0.076 |
ADG-21d-230 | 54.41 | 20.55 | 0.280 |
ADG-28d-230 | 44.82 | 21.87 | 0.25 |
参数/(mg·kg-1) | G-230 | ADG-7d-230 |
---|---|---|
无机元素 | ||
K | 720.67 | 869.95 |
Ca | 22323.20 | 25444.37 |
Na | 133.42 | 240.95 |
Mg | 2586.22 | 3327.14 |
P | 5350.21 | 6157.90 |
Al | 1554.11 | 6758.90 |
Si | 4920.62 | 4801.05 |
Cu | 90.44 | 104.36 |
Zn | 326.45 | 246.50 |
Fe | 3211.70 | 7804.13 |
重金属元素 | ||
As | 0.76 | 0.21 |
Hg | 0.54 | 0.62 |
Pb | 9.90 | 20.05 |
Cd | 0.08 | 0.11 |
Cr | 19.12 | 45.23 |
Table 3 Inorganic and heavy metal elements of hydrochar derived from pretreated and untreated with AD
参数/(mg·kg-1) | G-230 | ADG-7d-230 |
---|---|---|
无机元素 | ||
K | 720.67 | 869.95 |
Ca | 22323.20 | 25444.37 |
Na | 133.42 | 240.95 |
Mg | 2586.22 | 3327.14 |
P | 5350.21 | 6157.90 |
Al | 1554.11 | 6758.90 |
Si | 4920.62 | 4801.05 |
Cu | 90.44 | 104.36 |
Zn | 326.45 | 246.50 |
Fe | 3211.70 | 7804.13 |
重金属元素 | ||
As | 0.76 | 0.21 |
Hg | 0.54 | 0.62 |
Pb | 9.90 | 20.05 |
Cd | 0.08 | 0.11 |
Cr | 19.12 | 45.23 |
1 | Song Y J, Meng S Y, Chen G Y, et al. Co-digestion of garden waste, food waste, and tofu residue: effects of mixing ratio on methane production and microbial community structure[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105901. |
2 | Panigrahi S, Sharma H B, Dubey B K. Anaerobic co-digestion of food waste with pretreated yard waste: a comparative study of methane production, kinetic modeling and energy balance[J]. Journal of Cleaner Production, 2020, 243: 118480. |
3 | Huang C, Xiong L, Guo H J, et al. Anaerobic digestion of elephant grass hydrolysate: biogas production, substrate metabolism and outlet effluent treatment[J]. Bioresource Technology, 2019, 283: 191-197. |
4 | Sharma H B, Panigrahi S, Sarmah A K, et al. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: a circular economy concept[J]. Science of the Total Environment, 2020, 706: 135907. |
5 | Mumme J, Eckervogt L, Pielert J, et al. Hydrothermal carbonization of anaerobically digested maize silage[J]. Bioresource Technology, 2011, 102(19): 9255-9260. |
6 | Libra J A, Ro K S, Kammann C, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1): 71-106. |
7 | Kang S M, Li X L, Fan J, et al. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal[J]. Industrial & Engineering Chemistry Research, 2012, 51(26): 9023-9031. |
8 | Sheng K C, Zhang S, Liu J L, et al. Hydrothermal carbonization of cellulose and xylan into hydrochars and application on glucose isomerization[J]. Journal of Cleaner Production, 2019, 237: 117831. |
9 | Chen G Y, Guo X, Liu F, et al. Gasification of lignocellulosic biomass pretreated by anaerobic digestion (AD) process: an experimental study[J]. Fuel, 2019, 247: 324-333. |
10 | Wang T P, Ye X N, Yin J, et al. Effects of biopretreatment on pyrolysis behaviors of corn stalk by methanogen[J]. Bioresource Technology, 2014, 164: 416-419. |
11 | Funke A, Mumme J, Koon M, et al. Cascaded production of biogas and hydrochar from wheat straw: energetic potential and recovery of carbon and plant nutrients[J]. Biomass and Bioenergy, 2013, 58: 229-237. |
12 | Sawatdeenarunat C, Nam H, Adhikari S, et al. Decentralized biorefinery for lignocellulosic biomass: integrating anaerobic digestion with thermochemical conversion[J]. Bioresource Technology, 2018, 250: 140-147. |
13 | Erdogan E, Atila B, Mumme J, et al. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor[J]. Bioresource Technology, 2015, 196: 35-42. |
14 | Pagés-Díaz J, Cerda Alvarado A O, Montalvo S, et al. Anaerobic bio-methane potential of the liquors from hydrothermal carbonization of different lignocellulose biomasses[J]. Renewable Energy, 2020, 157: 182-189. |
15 | Choe U, Mustafa A M, Lin H J, et al. Anaerobic co-digestion of fish processing waste with a liquid fraction of hydrothermal carbonization of bamboo residue[J]. Bioresource Technology, 2020, 297: 122542. |
16 | Panigrahi S, Dubey B K. Electrochemical pretreatment of yard waste to improve biogas production: understanding the mechanism of delignification, and energy balance[J]. Bioresource Technology, 2019, 292: 121958. |
17 | Reza M T, Werner M, Pohl M, et al. Evaluation of integrated anaerobic digestion and hydrothermal carbonization for bioenergy production[J]. Journal of Visualized Experiments, 2014(88): 51734. |
18 | Zhang D L, Wang F, Shen X L, et al. Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate[J]. Energy, 2018, 165: 527-536. |
19 | Huang S M, Wang T, Chen K, et al. Engineered biochar derived from food waste digestate for activation of peroxymonosulfate to remove organic pollutants[J]. Waste Management, 2020, 107: 211-218. |
20 | Chen Y D, Bai S W, Li R X, et al. Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact[J]. Environment International, 2019, 126: 302-308. |
21 | Moodley P, Sewsynker-Sukai Y, Gueguim Kana E B. Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: potential for bioethanol production[J]. Bioresource Technology, 2020, 310: 123372. |
22 | Guan R L, Li X J, Wachemo A C, et al. Enhancing anaerobic digestion performance and degradation of lignocellulosic components of rice straw by combined biological and chemical pretreatment[J]. Science of the Total Environment, 2018, 637/638: 9-17. |
23 | Dai X H, Hua Y, Liu R, et al. Biomethane production by typical straw anaerobic digestion: deep insights of material compositions and surface properties[J]. Bioresource Technology, 2020, 313: 123643. |
24 | Wang Y S, Song Y J, Li N, et al. Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2022, 421: 126794. |
25 | López Barreiro D, Samorì C, Terranella G, et al. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction[J]. Bioresource Technology, 2014, 174: 256-265. |
26 | Heilmann S M, Molde J S, Timler J G, et al. Phosphorus reclamation through hydrothermal carbonization of animal manures[J]. Environmental Science & Technology, 2014, 48(17): 10323-10329. |
27 | Aragón-Briceño C I, Pozarlik A K, Bramer E A, et al. Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: a review[J]. Renewable Energy, 2021, 171: 401-415. |
28 | Zhao X, Becker G C, Faweya N, et al. Fertilizer and activated carbon production by hydrothermal carbonization of digestate[J]. Biomass Conversion and Biorefinery, 2018, 8(2): 423-436. |
29 | Wang T, Chen Y C, Li J P, et al. Co-pyrolysis behavior of sewage sludge and rice husk by TG-MS and residue analysis[J]. Journal of Cleaner Production, 2020, 250: 119557. |
30 | Yang H P, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
31 | Zhou Y C, Chen Z Z, Gong H J, et al. Characteristics of dehydration during rice husk pyrolysis and catalytic mechanism of dehydration reaction with NiO/γ-Al2O3 as catalyst[J]. Fuel, 2019, 245: 131-138. |
32 | Minh Loy A C, Yusup S, Chin B L F, et al. Comparative study of in situ catalytic pyrolysis of rice husk for syngas production: kinetics modelling and product gas analysis[J]. Journal of Cleaner Production, 2018, 197: 1231-1243. |
33 | Sanchez-Silva L, López-González D, Villaseñor J, et al. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis[J]. Bioresource Technology, 2012, 109: 163-172. |
34 | Yu J L, Lucas J A, Wall T F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: a review[J]. Progress in Energy and Combustion Science, 2007, 33(2): 135-170. |
35 | Luo L, Liu J X, Zhang H, et al. TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 64-74. |
[1] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[2] | Zhengzhong MAO, Yi SUN, Zhipeng HUANG, Chaochao LI, Haobin HUANG, Shao an CHENG. Progress of research on methanogenic microbial electrolysis cell [J]. CIESC Journal, 2019, 70(7): 2411-2425. |
[3] | LIU Qian, ZHONG Wenqi, SU Wei, BEN Haoxi. Oxy-coal combustion kinetics and formation characteristics of pollutants based on TG-MS analysis [J]. CIESC Journal, 2018, 69(1): 523-530. |
[4] | LIU Changqing, WANG Yulan, LIN Hong, ZHAO Youcai, ZHENG Yuyi, WU Chunshan. Chemicalthermal pretreatment and subsequent anaerobic digestion of sludge with low organic content [J]. CIESC Journal, 2017, 68(4): 1608-1613. |
[5] | PAN Chanchan, LIU Xia, HUO Wei, GUO Xiaolei, GONG Xin. Functional groups and pyrolysis characteristics of fine gasification ashes and raw coals [J]. CIESC Journal, 2015, 66(4): 1449-1458. |
[6] | FU Shanfei, XU Xiaohui, SHI Xiaoshuang, ZHAO Yuzhong, WANG Chuanshui, GUO Rongbo. Effect of oxygen supply at initial stage of anaerobic digestion on biogas production from corn straw [J]. CIESC Journal, 2015, 66(3): 1111-1116. |
[7] | LI Heng, KE Lanting, WANG Haitao, ZHENG Yanmei, WANG Yuanpeng, HE Ning, LI Qingbiao. Simulation research on anaerobic digestion biogas generation from low-grade biomass [J]. CIESC Journal, 2014, 65(5): 1577-1586. |
[8] | FU Shanfei, XU Xiaohui, SHI Xiaoshuang, WANG Chuanshui, QIAO Jiangtao, YANG Zhiman, GUO Rongbo. Basic research on utilization of stillage for biogas production [J]. CIESC Journal, 2014, 65(5): 1913-1919. |
[9] | SONG Zilin, SUN Xuewen, YANG Gaihe, YAN Zhiying, YUAN Yuexiang, LI Dong, LI Xiangzhen, LIU Xiaofeng. Effect of NaOH pretreatment on methane yield of corn straw at different temperatures by anaerobic digestion [J]. CIESC Journal, 2014, 65(5): 1876-1882. |
[10] | LIU Huajie,YANG Dianhai,XUE Yonggang,DUAN Nina,DAI Xiaohu. Anaerobic digestion of oily sludge in wastewater treatment plant [J]. Chemical Industry and Engineering Progree, 2013, 32(10): 2501-2506. |
[11] | GAO Peng,ZHANG Dong,JIA Shuting,DONG Bin,DAI Xiaohu. Research on bio-production of short-chain fatty acids from excess sludge during anaerobic digestion [J]. Chemical Industry and Engineering Progree, 2013, 32(09): 2227-2232. |
[12] | CHI Yongzhi1,2,LIU Xiaomin1,LI Yuyou3,ZHANG Yu2,FEI Xuening1,WANG Yuchen1. Research progress on microwave pretreatment of waste activated sludge [J]. Chemical Industry and Engineering Progree, 2013, 32(09): 2221-2226. |
[13] | ZHANG Jue,XING Baoshan,MA Chun,WANG Hui,JIN Rencun. Influencing factors of anaerobic digestion foaming [J]. Chemical Industry and Engineering Progree, 2013, 32(05): 1152-1156. |
[14] | ZHANG Hui1,HU Qinhai1,WU Zucheng1,PAN Huiyun2. An overview on utilization of municipal sludge as energy resources [J]. Chemical Industry and Engineering Progree, 2013, 32(05): 1145-1151. |
[15] | JIN Xiaoqi. Study on NO adsorption-desorption property of amide-multi-walled carbon nanotubes by TG-MS [J]. Chemical Industry and Engineering Progree, 2013, 32(05): 1091-1096. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||