[1] |
BP statistical review of world energy[R]. 2017.
|
[2] |
郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23):3856-3864. ZHENG C G, ZHAO Y C, GUO X. Research and development of oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2014, 34(23):3856-3864.
|
[3] |
WALL T, STANGER R, SANTOS S.Demonstrations of coal-fired oxy-fuel technology for carbon capture and storage and issues with commercial deployment[J].International Journal of Greenhouse Gas Control, 2011, 5(S1):S5-S15.
|
[4] |
EHSAN A A, AHNET Y. A study on the effects of catalysts on pyrolysis and combustion characteristics of Turkish lignite in oxy-fuel conditions[J]. Fuel, 2014, 115:841-849.
|
[5] |
WANG B, SUN L, SU S. Char structural evolution during pyrolysis and its influence on combustion reactivity in air and oxy-fuel conditions[J]. Energy & Fuel, 2012, 26:1565-1574.
|
[6] |
LIU X W, XU M H, SI J P, et al. Effect of sodium on the structure and reactivity of the chars formed under N2 and CO2 atmospheres[J]. Energy & Fuel, 2012, 26:185-192.
|
[7] |
SMART J P, RILEY G S. On the effects of firing semi-anthracite and bituminous coal under oxy-fuel firing conditions[J]. Fuel, 2011, 90:2812-2816.
|
[8] |
GIL M V, RIAZA J, ALVAREZ L, et al. Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor[J]. Applied Energy, 2011, 91:67-74.
|
[9] |
OBRAS-LOSCERTALES M L, RUFAS A. Effects of temperature and flue gas recycle on the SO2 and NOx emissions in an oxy-fuel fluidized bed combustor[J]. Energy Procedia, 2013, 37:1275-1282.
|
[10] |
LUPIANEZ C, GUEDEA I, BOLEA I, et al. Experimental study of SO2 and NOx emissions in fluidized bed oxy-fuel combustion[J]. Fuel Processing Technology, 2012, 106:587-594.
|
[11] |
ARIAS B, PEVIDA C, RUBIERA F, et al. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion[J]. Fuel, 2008, 87:2753-2759.
|
[12] |
周志军, 姜旭东, 周俊虎, 等. 煤粉富氧燃烧着火模式判断和动力学参数分析[J]. 浙江大学学报(工学版), 2012, 46(3):482-488. ZHOU Z J, JIANG X D, ZHOU J H, et al. Ignition model and kinetic parameters analysis of oxygen-enriched combustion of pulverized coal[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(3):482-488.
|
[13] |
雷鸣, 王春波, 王松岭, 等. 煤粉热解特性对其富氧气氛下着火机理的影响[J]. 燃烧科学与技术, 2012, 18(3):260-264. LEI M, WANG C B, WANG S L, et al. Effect of pyrolysis characteristics of pulverized coal on the ignition mechanism of oxy-fuel combustion[J]. Journal of Combustion Science and Technology, 2012, 18(3):260-264.
|
[14] |
STADLER H, CHRIST D, HABERMEHL M, et al. Experimental investigation of NOx emissions in oxycoal combustion[J]. Fuel, 2011, 90(4):1604-1611.
|
[15] |
于岩, 阎维平, 刘彦丰, 等. O2/CO2气氛下O2, CO对NO排放特性影响的实验研究[J]. 华北电力大学学报, 2004, 31(2):28-31. YU Y, YAN W P, LIU Y F, et al. Experimental investigation on effect of O2, CO concentrations on NO emission in O2/CO2 combustion[J]. Journal of North China Electric Power University, 2004, 31(2):28-31.
|
[16] |
陈传敏, 赵长遂, 庞克亮, 等. O2/CO2气氛下燃煤过程中NOx排放特性实验研究[J]. 东南大学学报(自然科学版), 2005, 35(5):738-741. CHEN C M, ZHAO C S, PANG K L, et al. Experimental study on NOx emission from coal combustion under O2/CO2 atmosphere[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(5):738-741.
|
[17] |
CROISET E, THAMBIMUTHU K V. NOx and SO2 emissions from O2/CO2 recycle coal combustion[J]. Fuel, 2001, 80(14):2117-2121.
|
[18] |
LIU H, OKAZAKI K. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation[J]. Fuel, 2003, 82(11):1427-1436.
|
[19] |
KANDASAMY J, MUSTAFA V K, ISKENDER G. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends[J]. Renewable Energy, 2017, 101:293-300.
|
[20] |
KANDASAMY J, MUSTAFA V K, ISKENDER G. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS[J]. Applied Thermal Engineering, 2017, 125:1446-1455.
|
[21] |
GAO Y, TAHMASEBI A, DOU J, et al. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite[J]. Bioresource Technology, 2016, 207:276-284.
|
[22] |
OTERO M, SÁNCHEZ M E, GÓMEZ X. Co-firing of coal and manure biomass:a TG-MS approach[J]. Bioresource Technology, 2011, 102:8304-8309.
|
[23] |
YU D, CHEN M, WEI Y, et al. An assessment on co-combustion characteristics of Chinese lignite and eucalyptus bark with TG-MS technique[J]. Powder Technology, 2016, 294:463-471.
|
[24] |
李帅帅, 王学斌, 刘梓晗, 等. O2/CO2气氛下碳烟氧化的反应动力学研究[J]. 动力工程学报, 2017, 37(8):673-678. LI S S, WANG X B, LIU Z H, et al. Study on reaction kinetics of soot oxidation in O2/CO2 atmosphere[J]. Journal of Chinese Society of Powder Engineering, 2017, 37(8):673-678.
|
[25] |
孙学信. 燃煤锅炉燃烧试验技术与方法[M]. 北京:中国电力出版社, 2002:59-82. SUN X X. Technology and Methods of Combustion Experiments for Coal-Fired Boilers[M]. Beijing:China Electric Power Press, 2002:59-82.
|
[26] |
ESSENHIGH R H, MISRA M K, SHAW D W.Ignition of coal particles:a review[J]. Combustion and Flame, 1989, 77(1):3-30.
|
[27] |
ENGIN B, ATAKÜL H. Air and oxy-fuel combustion kinetics of low rank lignites[J/OL]. Journal of the Energy Institute, 2016, https://doi.org/10.1016/j.joei.2016.11.004.
|
[28] |
SMART J P, O'NIONS P, RILEY G S. Radiation and convective heat transfer, and burnout in oxy-coal combustion[J]. Fuel, 2010, 89:2468-2476.
|
[29] |
LI D, LIU X, FENG Y, et al. Effects of oxidant distribution mode and burner configuration on oxy-fuel combustion characteristics in a 600 MWe utility boiler[J]. Applied Thermal Engineering, 2017, 124:781-794.
|
[30] |
RATHNAM R K, ELLIOTT L K, WALL T, et al. Differences in reactivity of pulverized coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions[J]. Fuel Processing Technology, 2009, 90:797-802.
|