CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1127-1135.DOI: 10.11949/0438-1157.20211070
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Received:
2021-08-02
Revised:
2022-01-17
Online:
2022-03-14
Published:
2022-03-15
Contact:
Qiang LI
通讯作者:
李强
作者简介:
孙雄康(1996—),男,硕士研究生,CLC Number:
Xiongkang SUN, Qiang LI. Research on enhanced boiling heat transfer of multilevel composite wick structure[J]. CIESC Journal, 2022, 73(3): 1127-1135.
孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135.
Add to citation manager EndNote|Ris|BibTeX
参数 | 不确定度 | 最小测量值 | 最大相对不确定度 |
---|---|---|---|
D | 0.02mm | 10mm | 0.2% |
L | 0.02mm | 7mm | 0.29% |
U | 0.1V | 10.6V | 0.94% |
I | 0.01A | 0.31A | 3.2% |
Tf | 0.2℃ | — | — |
T1,T2 | 0.2℃ | — | — |
Table 1 Uncertainty of direct measurement
参数 | 不确定度 | 最小测量值 | 最大相对不确定度 |
---|---|---|---|
D | 0.02mm | 10mm | 0.2% |
L | 0.02mm | 7mm | 0.29% |
U | 0.1V | 10.6V | 0.94% |
I | 0.01A | 0.31A | 3.2% |
Tf | 0.2℃ | — | — |
T1,T2 | 0.2℃ | — | — |
参数 | 计算公式 | 不确定度 | 最大相对不确定度 |
---|---|---|---|
q | — | 8% | |
0.28℃ | — | ||
h | — | 10.2% |
Table 2 Uncertainty of indirect measurement
参数 | 计算公式 | 不确定度 | 最大相对不确定度 |
---|---|---|---|
q | — | 8% | |
0.28℃ | — | ||
h | — | 10.2% |
1 | 谭华玉, 高春阳, 刘立新. 多孔表面的制造方法及其强化沸腾传热效果的比较[J]. 流体机械, 2006, 34(1): 80-85. |
Tan H Y, Gao C Y, Liu L X. Manufacturing methods of porous surface and comparison of enhanced boiling heat transfer effect[J]. Fluid Machinery, 2006, 34(1): 80-85. | |
2 | 王宏智. 烧结型表面多孔管沸腾传热性能试验研究[D]. 上海: 华东理工大学, 2010. |
Wang H Z. Experimental study on boiling heat transfer characteristics of sintered porous surface tubes[D]. Shanghai: East China University of Science and Technology, 2010. | |
3 | Li C, Peterson G P. Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces[J]. Journal of Heat Transfer, 2007, 129(11): 1465-1475. |
4 | Vemuri S, Kim K J. Pool boiling of saturated FC-72 on nano-porous surface[J]. International Communications in Heat and Mass Transfer, 2005, 32(1/2): 27-31. |
5 | Meléndez E, Reyes R. The pool boiling heat transfer enhancement from experiments with binary mixtures and porous heating covers[J]. Experimental Thermal and Fluid Science, 2006, 30(3): 185-192. |
6 | Wojcik T M. Experimental investigations of boiling heat transfer hysteresis on sintered, metal-Fibrous, porous structures[J]. Experimental Thermal and Fluid Science, 2009, 33(3): 397-404. |
7 | Arik M, Bar-Cohen A, You S M. Enhancement of pool boiling critical heat flux in dielectric liquids by microporous coatings[J]. International Journal of Heat and Mass Transfer, 2007, 50(5/6): 997-1009. |
8 | 张小霞, 汤勇, 万珍平, 等. 不锈钢三维整体外翅片管的复合成形[J]. 华南理工大学学报(自然科学版), 2011, 39(8): 13-18. |
Zhang X X, Tang Y, Wan Z P, et al. Compound forming of outside 3-dimension integral fins on stainless steel tubes[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(8): 13-18. | |
9 | Cooke D, Kandlikar S G. Effect of open microchannel geometry on pool boiling enhancement[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 1004-1013. |
10 | Yu C K, Lu D C. Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72[J]. International Journal of Heat and Mass Transfer, 2007, 50(17/18): 3624-3637. |
11 | Ujereh S, Fisher T, Mudawar I. Effects of carbon nanotube arrays on nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4023-4038. |
12 | Lee C Y, Zhang B J, Kim K J. Morphological change of plain and nano-porous surfaces during boiling and its effect on nucleate pool boiling heat transfer[J]. Experimental Thermal and Fluid Science, 2012, 40: 150-158. |
13 | McHale J P, Garimella S V. Nucleate boiling from smooth and rough surfaces (Ⅰ): Fabrication and characterization of an optically transparent heater-sensor substrate with controlled surface roughness[J]. Experimental Thermal and Fluid Science, 2013, 44: 456-467. |
14 | 曾勇, 徐宏, 侯峰, 等. 火焰喷涂型表面多孔管的性能研究[J]. 化工机械, 2010, 37(2): 141-144, 153. |
Zeng Y, Xu H, Hou F, et al. Property studies on the flame-sprayed type surface porous tubes[J]. Chemical Engineering & Machinery, 2010, 37(2): 141-144, 153. | |
15 | 陈振兴, 蔡祺凤. 烧结型表面多孔管的沸腾传热研究[J]. 轻金属, 1994(4): 10-14. |
Chen Z X, Cai Q F. Research on boiling heat transfer of sintered surface porous tube [J]. Light Metals, 1994(4): 10-14. | |
16 | 李隆梅, 黄文沂, 南峰, 等. 表面多孔涂层管强化传热技术研究[J]. 福州大学学报(自然科学版), 1997, 25(6): 102-107. |
Li L M, Huang W Y, Nan F, et al. Appaxatus and technology for enhancing heat transfer of porous surface coating tube[J]. Journal of Fuzhou University (Natural Sciences Edtion), 1997, 25(6): 102-107. | |
17 | Webb R L. The evolution of enhanced surface geometries for nucleate boiling[J]. Heat Transfer Engineering, 1981, 2(3/4): 46-69. |
18 | Hwang G S, Kaviany M. Critical heat flux in thin, uniform particle coatings[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 844-849. |
19 | Liter S G, Kaviany M. Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment[J]. International Journal of Heat and Mass Transfer, 2001, 44(22): 4287-4311. |
20 | Min D H, Hwang G S, Usta Y, et al. 2-D and 3-D modulated porous coatings for enhanced pool boiling[J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2607-2613. |
21 | Ze H J, Wu F F, Chen S H, et al. Superhydrophilic composite structure of copper microcavities and nanocones for enhancing boiling heat transfer[J]. Advanced Materials Interfaces, 2020, 7(14): 2000482. |
22 | 黄青松. 内凹槽多孔复合吸液芯平板热管制造及散热性能研究[D]. 厦门: 厦门大学, 2018. |
Huang Q S. Fabrication and heat transfer performance of vapor chambers with reentrant porous composite wick[D]. Xiamen: Xiamen University, 2018. | |
23 | 尹德蓉. 微柱复合多孔介质沸腾换热特性实验研究[D]. 郑州: 郑州大学, 2018. |
Yin D R. Experimental investigation of pool boiling heat transfer characteristics on micro-square column with porous medium surface[D]. Zhengzhou: Zhengzhou University, 2018. | |
24 | Mo D C, Yang S, Luo J L, et al. Enhanced pool boiling performance of a porous honeycomb copper surface with radial diameter gradient[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119867. |
25 | Nasersharifi Y, Kaviany M, Hwang G. Pool-boiling enhancement using multilevel modulated wick[J]. Applied Thermal Engineering, 2018, 137: 268-276. |
26 | Ju Y S, Kaviany M, Nam Y, et al. Planar vapor chamber with hybrid evaporator wicks for the thermal management of high-heat-flux and high-power optoelectronic devices[J]. International Journal of Heat and Mass Transfer, 2013, 60: 163-169. |
27 | 周述璋, 孙玉丽, 陈妍, 等. 双向微槽道多孔复合结构沸腾传热研究[J]. 装备环境工程, 2016, 13(2): 18-23, 115. |
Zhou S Z, Sun Y L, Chen Y, et al. Boiling heat transfer of two-way micro-channel porous composite structure[J]. Equipment Environmental Engineering, 2016, 13(2): 18-23, 115. | |
28 | Xu P F, Li Q, Xuan Y M. Enhanced boiling heat transfer on composite porous surface[J]. International Journal of Heat and Mass Transfer, 2015, 80: 107-114. |
29 | Pastuszko R. Pool boiling heat transfer on micro-fins with wire mesh-experiments and heat flux prediction[J]. International Journal of Thermal Sciences, 2018, 125: 197-209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||