CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1817-1825.DOI: 10.11949/0438-1157.20211852
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zihe CHEN(),Chengzhi ZHAO,Wenli MAO,Nan SHENG,Chunyu ZHU()
Received:
2021-12-30
Revised:
2022-02-14
Online:
2022-04-25
Published:
2022-04-05
Contact:
Chunyu ZHU
通讯作者:
朱春宇
作者简介:
陈子禾(1997—),男,硕士研究生,基金资助:
CLC Number:
Zihe CHEN, Chengzhi ZHAO, Wenli MAO, Nan SHENG, Chunyu ZHU. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon[J]. CIESC Journal, 2022, 73(4): 1817-1825.
陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
Add to citation manager EndNote|Ris|BibTeX
填料骨架命名 | 石蜡复合物 | 实验条件 |
---|---|---|
无填料 | Paraffin | 石蜡空白样品 |
C-1200 | C/P-1200 | 未改性,1200℃热处理 |
Ch/C-1200 | Ch/C/P-1200 | 壳聚糖改性,1200℃热处理 |
Table 1 Name of samples and experimental condition
填料骨架命名 | 石蜡复合物 | 实验条件 |
---|---|---|
无填料 | Paraffin | 石蜡空白样品 |
C-1200 | C/P-1200 | 未改性,1200℃热处理 |
Ch/C-1200 | Ch/C/P-1200 | 壳聚糖改性,1200℃热处理 |
样品 | 熔化过程 | 凝固过程 | ||
---|---|---|---|---|
Tmp/℃ | ΔHm /(J/g) | Tsp/℃ | ΔHs/(J/g) | |
Paraffin | 58.0 | 203.9 | 49.8 | 204.0 |
C/P-1200 | 58.4 | 130.2 | 48.9 | 129.3 |
Ch/C/P-1200 | 59.1 | 126.9 | 48.5 | 126.6 |
Table 2 Temperature and enthalpy of PCC during melting and solidification
样品 | 熔化过程 | 凝固过程 | ||
---|---|---|---|---|
Tmp/℃ | ΔHm /(J/g) | Tsp/℃ | ΔHs/(J/g) | |
Paraffin | 58.0 | 203.9 | 49.8 | 204.0 |
C/P-1200 | 58.4 | 130.2 | 48.9 | 129.3 |
Ch/C/P-1200 | 59.1 | 126.9 | 48.5 | 126.6 |
10 | Yang L, Yao Y, Zhang D D, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2019, 7(5): 464-472. |
11 | Tong X, Li N Q, Zeng M, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: recent advancement and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 398-422. |
12 | 胡定华, 许肖永, 林肯, 等. 石蜡/膨胀石墨/石墨片复合相变材料导热性能研究[J]. 工程热物理学报, 2021, 42(9): 2414-2418. |
Hu D H, Xu X Y, Lin K, et al. Study on heat conductivity of paraffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418. | |
13 | Zhou Y, Sun W C, Ling Z Y, et al. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14799-14806. |
14 | 华维三, 章学来, 罗孝学, 等. 纳米金属/石蜡复合相变蓄热材料的实验研究[J]. 太阳能学报, 2017, 38(6): 1723-1728. |
Hua W S, Zhang X L, Luo X X, et al. Experimental study of nanometal-paraffin composite phase change heat storage material[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1723-1728. | |
15 | Sheng N, Dong K X, Zhu C Y, et al. Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler[J]. Materials Chemistry and Physics, 2019, 229: 87-91. |
16 | Zhao B, Wang Y C, Wang C B, et al. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3 [J]. Journal of Energy Storage, 2021, 42: 103028. |
17 | Maher H, Rocky K A, Bassiouny R, et al. Synthesis and thermal characterization of paraffin-based nanocomposites for thermal energy storage applications[J]. Thermal Science and Engineering Progress, 2021, 22: 100797. |
18 | Yuan W Z, Yang X Q, Zhang G Q, et al. A thermal conductive composite phase change material with enhanced volume resistivity by introducing silicon carbide for battery thermal management[J]. Applied Thermal Engineering, 2018, 144: 551-557. |
19 | Wu S, Li T X, Yan T, et al. High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 102: 733-744. |
1 | Lin Y X, Jia Y T, Alva G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
2 | Feng D L, Feng Y H, Qiu L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 578-605. |
20 | Hu X P, Wu H, Lu X, et al. Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 478-491. |
21 | Chriaa I, Karkri M, Trigui A, et al. The performances of expanded graphite on the phase change materials composites for thermal energy storage[J]. Polymer, 2021, 212: 123128. |
22 | Zou D Q, Ma X F, Liu X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41. |
23 | Yu S, Jeong S G, Chung O, et al. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2014, 120: 549-554. |
24 | Yang J, Qi G Q, Tang L S, et al. Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage[J]. Journal of Materials Chemistry A, 2016, 4(24): 9625-9634. |
25 | Wu S Y, Chen Q Y, Chen D D, et al. Multiscale study of thermal conductivity of boron nitride nanosheets/paraffin thermal energy storage materials[J]. Journal of Energy Storage, 2021, 41: 102931. |
26 | Yang J, Li X F, Han S, et al. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability[J]. Journal of Materials Chemistry A, 2018, 6(14): 5880-5886. |
27 | Yang J, Qi G Q, Bao R Y, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials[J]. Energy Storage Materials, 2018, 13: 88-95. |
28 | Wei Y H, Li J J, Sun F R, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858-1865. |
29 | Palazzolo M A, Dourges M A, Magueresse A, et al. Preparation of lignosulfonate-based carbon foams by pyrolysis and their use in the microencapsulation of a phase change material[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2453-2461. |
30 | Li B X, Liu T X, Hu L Y, et al. Fabrication and properties of microencapsulated Paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380. |
31 | Xue G B, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15052-15057. |
32 | Zhu M W, Li Y J, Chen G, et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials, 2017, 29(44): 1704107. |
33 | Qian T T, Zhu S K, Wang H L, et al. Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase-change material composites[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2446-2458. |
3 | Nazir H, Batool M, Bolivar Osorio F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
4 | 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564. |
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564. | |
5 | Mohamed S A, Al-Sulaiman F A, Ibrahim N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089. |
6 | Alva G, Liu L K, Huang X, et al. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 693-706. |
7 | Khan M M A, Saidur R, Al-Sulaiman F A. A review for phase change materials (PCMs) in solar absorption refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 105-137. |
8 | Nofal M, Al-Hallaj S, Pan Y Y. Thermal management of lithium-ion battery cells using 3D printed phase change composites[J]. Applied Thermal Engineering, 2020, 171: 115126. |
9 | Arshad A, Jabbal M, Shi L, et al. Development of TiO2/RT-35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications[J]. Sustainable Energy Technologies and Assessments, 2021, 43: 100865. |
10 | 杨磊, 姚远, 张冬冬, 等. 有机相变储能材料的研究进展[J]. 新能源进展, 2019, 7(5): 464-472. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[15] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||