CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2819-2834.DOI: 10.11949/0438-1157.20220370
• Reviews and monographs • Previous Articles Next Articles
Xiaoya LIU1(),Jinchao WANG2,Ying LIU1,3,4(),Jinghuan MA1
Received:
2022-03-14
Revised:
2022-06-22
Online:
2022-08-01
Published:
2022-07-05
Contact:
Ying LIU
通讯作者:
刘莹
作者简介:
刘晓涯(1987—),女,硕士,基金资助:
CLC Number:
Xiaoya LIU, Jinchao WANG, Ying LIU, Jinghuan MA. Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine[J]. CIESC Journal, 2022, 73(7): 2819-2834.
刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
Add to citation manager EndNote|Ris|BibTeX
91 | Zou H T, Yao Q L, Huang M L, et al. Noble-metal-free NiFe nanoparticles immobilized on nano CeZrO2 solid solutions for highly efficient hydrogen production from hydrous hydrazine[J]. Sustainable Energy & Fuels, 2019, 3(11): 3071-3077. |
92 | Sun J K, Xu Q. Metal nanoparticles immobilized on carbon nanodots as highly active catalysts for hydrogen generation from hydrazine in aqueous solution[J]. ChemCatChem, 2015, 7(3): 526-531. |
93 | Xia B Q, Liu T, Luo W, et al. NiPt-MnO x supported on N-doped porous carbon derived from metal-organic frameworks for highly efficient hydrogen generation from hydrazine[J]. Journal of Materials Chemistry A, 2016, 4(15): 5616-5622. |
94 | Chen J M, Zou H T, Yao Q L, et al. Cr2O3-modified NiFe nanoparticles as a noble-metal-free catalyst for complete dehydrogenation of hydrazine in aqueous solution[J]. Applied Surface Science, 2020, 501: 144247. |
95 | Song F Z, Yang X C, Xu Q. Ultrafine bimetallic Pt-Ni nanoparticles achieved by metal-organic framework templated zirconia/porous carbon/reduced graphene oxide: remarkable catalytic activity in dehydrogenation of hydrous hydrazine[J]. Small Methods, 2020, 4(1): 1900707. |
96 | Xu L X, Liu N, Hong B, et al. Nickel-platinum nanoparticles immobilized on graphitic carbon nitride as highly efficient catalyst for hydrogen release from hydrous hydrazine[J]. RSC Advances, 2016, 6(38): 31687-31691. |
97 | Wan C, Sun L, Xu L X, et al. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: a highly efficient catalyst for hydrogen generation from hydrous hydrazine[J]. Journal of Materials Chemistry A, 2019, 7(15): 8798-8804. |
98 | Qiu Y P, Shi Q, Zhou L L, et al. NiPt nanoparticles anchored onto hierarchical nanoporous N-doped carbon as an efficient catalyst for hydrogen generation from hydrazine monohydrate[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18617-18624. |
99 | Yao Q L, He M, Hong X L, et al. MoO x -modified bimetallic alloy nanoparticles for highly efficient hydrogen production from hydrous hydrazine[J]. Inorganic Chemistry Frontiers, 2019, 6(6): 1546-1552. |
100 | Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states[J]. Nature Materials, 2021, 20(10): 1347-1352. |
101 | Yao Q L, Ding Y Y, Lu Z H. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides[J]. Inorganic Chemistry Frontiers, 2020, 7(20): 3837-3874. |
102 | Wang H L, Yan J M, Wang Z L, et al. Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature[J]. Journal of Materials Chemistry A, 2013, 1(47): 14957-14962. |
103 | Song-Il O, Yan J M, Wang H L, et al. High catalytic kinetic performance of amorphous CoPt NPs induced on CeO x for H2 generation from hydrous hydrazine[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3755-3761. |
104 | Xia B Q, Cao N, Dai H M, et al. Bimetallic nickel-rhodium nanoparticles supported on ZIF-8 as highly efficient catalysts for hydrogen generation from hydrazine in alkaline solution[J]. ChemCatChem, 2014, 6(9): 2549-2552. |
105 | Liu P L, Gu X J, Wu Y Y, et al. Construction of bimetallic nanoparticles immobilized by porous functionalized metal-organic frameworks toward remarkably enhanced catalytic activity for the room-temperature complete conversion of hydrous hydrazine into hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(30): 19096-19105. |
106 | Liu T, Wang Q T, Yuan J Z, et al. Highly dispersed bimetallic nanoparticles supported on titanium carbides for remarkable hydrogen release from hydrous hydrazine[J]. ChemCatChem, 2018, 10(10): 2200-2204. |
1 | Sun Q M, Wang N, Xu Q, et al. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials[J]. Advanced Materials, 2020, 32(44): 2001818. |
2 | Zheng J, Zhou H, Wang C G, et al. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage[J]. Energy Storage Materials, 2021, 35: 695-722. |
3 | Lang C G, Jia Y, Yao X D. Recent advances in liquid-phase chemical hydrogen storage[J]. Energy Storage Materials, 2020, 26: 290-312. |
4 | Miller M, Bazylak A. A review of polymer electrolyte membrane fuel cell stack testing[J]. Journal of Power Sources, 2011, 196(2): 601-613. |
5 | 王中华, 郑淞生, 姚育栋, 等. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021. |
107 | Yin B, Wang Q T, Liu T, et al. Anchoring ultrafine RhNi nanoparticles on titanium carbides/manganese oxide as an efficient catalyst for hydrogen generation from hydrous hydrazine[J]. New Journal of Chemistry, 2018, 42(24): 20001-20006. |
5 | Wang Z H, Zheng S S, Yao Y D, et al. Research progress on electrocatalytic decomposition of ammonia for hydrogen production[J]. CIESC Journal, 2022, 73(3): 1008-1021. |
6 | Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180. |
7 | 马荣, 孙杰, 李东辉, 等. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703. |
Ma R, Sun J, Li D H, et al. Self-floating high-efficient evaporative catalytic seawater hydrogen production system driven by concentrated solar energy based on Cu/TiO2/C-Wood composite[J]. CIESC Journal, 2022, 73(4): 1695-1703. | |
8 | 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. |
Wang J, Kang L X, Liu Y Z. Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC Journal, 2020, 71(3): 1131-1142. | |
9 | 来天艺, 王纪康, 李天, 等. 光电解水产活性氢/氧耦合加氢/氧化过程用水滑石基纳米材料[J]. 化工学报, 2020, 71(10): 4327-4349. |
Lai T Y, Wang J K, Li T, et al. Photoelectrochemical water splitting into active hydrogen/oxygen species coupling with hydrogenation/oxidation process using layered double hydroxides-based nanocatalysts[J]. CIESC Journal, 2020, 71(10): 4327-4349. | |
10 | Pan J B, Wang B H, Wang J B, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation[J]. Angewandte Chemie International Edition, 2021, 60(3): 1433-1440. |
11 | Pan J B, Shen S, Chen L, et al. Core-shell photoanodes for photoelectrochemical water oxidation[J]. Advanced Functional Materials, 2021, 31(36): 2104269. |
12 | Tang J, Gao B, Pan J B, et al. CdS nanorods anchored with CoS2 nanoparticles for enhanced photocatalytic hydrogen production[J]. Applied Catalysis A: General, 2019, 588: 117281. |
13 | 王雨桐, 潘伦, 张香文, 等. 氨硼烷水解制氢研究进展[J]. 化工学报, 2021, 72(1): 180-191. |
Wang Y T, Pan L, Zhang X W, et al. Research progress of ammonia borane hydrolytic hydrogen production[J]. CIESC Journal, 2021, 72(1): 180-191. | |
14 | Zhu Q L, Xu Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage[J]. Energy & Environmental Science, 2015, 8(2): 478-512. |
15 | 贺雷, 黄延强, 王爱琴, 等. 温和条件下水合肼催化分解制氢研究进展[J]. 化工进展, 2014, 33(11): 2956-2962, 2969. |
He L, Huang Y Q, Wang A Q, et al. Progress in the catalytic decomposition of hydrous hydrazine for hydrogen production at mild conditions[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2956-2962, 2969. | |
16 | Wang C L, Astruc D. Recent developments of nanocatalyzed liquid-phase hydrogen generation[J]. Chemical Society Reviews, 2021, 50(5): 3437-3484. |
17 | Halseid R, Vie P J S, Tunold R. Effect of ammonia on the performance of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2006, 154(2): 343-350. |
18 | Asazawa K, Yamada K, Tanaka H, et al. A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles[J]. Angewandte Chemie International Edition, 2007, 46(42): 8024-8027. |
19 | Singh S K, Zhang X B, Xu Q. Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. Journal of the American Chemical Society, 2009, 131(29): 9894-9895. |
20 | Singh S K, Iizuka Y, Xu Q. Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11794-11801. |
21 | Singh S K, Xu Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage[J]. Journal of the American Chemical Society, 2009, 131(50): 18032-18033. |
22 | Singh S K, Xu Q. Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine[J]. Chemical Communications (Cambridge, England), 2010, 46(35): 6545-6547. |
23 | Singh S K, Xu Q. Bimetallic Ni-Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage[J]. Inorganic Chemistry, 2010, 49(13): 6148-6152. |
24 | Nørskov J K, Bligaard T, Hvolbaek B, et al. The nature of the active site in heterogeneous metal catalysis[J]. Chemical Society Reviews, 2008, 37(10): 2163-2171. |
25 | Qiu Y P, Wang W Z, Chen M H, et al. An ultra-highly active Ir-Ru-B/CeO2 catalyst for hydrogen generation from hydrazine monohydrate[J]. Journal of Materials Chemistry A, 2021, 9(34): 18385-18392. |
26 | Shi Q, Zhang D X, Yin H, et al. Noble-metal-free Ni-W-O-derived catalysts for high-capacity hydrogen production from hydrazine monohydrate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5595-5603. |
27 | Hu S L, Li W X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science, 2021, 374(6573): 1360-1365. |
28 | He Y B, Yu J X, Wu H S, et al. Defining the optimal morphology of Rh n nanoparticles for efficient hydrazine adsorption: a DFT-D3 study[J]. Journal of Materials Science, 2019, 54(13): 9533-9542. |
29 | Yin H, Qiu Y P, Dai H, et al. Understanding of selective H2 generation from hydrazine decomposition on Ni(111) surface[J]. The Journal of Physical Chemistry C, 2018, 122(10): 5443-5451. |
30 | Yang X B, Wang Y Y, Tong X L, et al. Strain engineering in electrocatalysts: fundamentals, progress, and perspectives[J]. Advanced Energy Materials, 2022, 12(5): 2102261. |
31 | Fathurrahman F, Kasai H. Density functional study of hydrazine adsorption and its N-N bond cleaving on Fe(110) surface[J]. Surface Science, 2015, 639: 25-31. |
32 | Pophristic V, Goodman L. Hyperconjugation not steric repulsion leads to the staggered structure of ethane[J]. Nature, 2001, 411(6837): 565-568. |
33 | Zheng F F, Dong H L, Ji Y J, et al. Adsorption of hydrazine on XC3 (X = B, Al, N, Si, and Ge) nanosheets: a computational study[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6055-6064. |
34 | Daff T D, de Leeuw N H. A density functional theory investigation of the molecular and dissociative adsorption of hydrazine on defective copper surfaces[J]. Journal of Materials Chemistry, 2012, 22(43): 23210-23220. |
35 | Tafreshi S S, Roldan A, de Leeuw N H. Density functional theory study of the adsorption of hydrazine on the perfect and defective copper (100), (110), and (111) surfaces[J]. The Journal of Physical Chemistry C, 2014, 118(45): 26103-26114. |
36 | Greeley J, Nørskov J K, Mavrikakis M. Electronic structure and catalysis on metal surfaces[J]. Annual Review of Physical Chemistry, 2002, 53: 319-348. |
37 | He Y B, Jia J F, Wu H S. The interaction of hydrazine with an Rh(111) surface as a model for adsorption to rhodium nanoparticles: a dispersion-corrected DFT study[J]. Applied Surface Science, 2015, 327: 462-469. |
38 | Qiu Y P, Yin H, Dai H, et al. Tuning the surface composition of Ni/meso-CeO2 with iridium as an efficient catalyst for hydrogen generation from hydrous hydrazine[J]. Chemistry-A European Journal, 2018, 24(19): 4902-4908. |
39 | Li Z, Fu J Y, Feng Y, et al. A silver catalyst activated by stacking faults for the hydrogen evolution reaction[J]. Nature Catalysis, 2019, 2(12): 1107-1114. |
40 | Barlocco I, Bellomi S, Tumiati S, et al. Selective decomposition of hydrazine over metal free carbonaceous materials[J]. Physical Chemistry Chemical Physics, 2022, 24(5): 3017-3029. |
41 | He Y B, Jia J F, Wu H S. Selectivity of Ni-based surface alloys toward hydrazine adsorption: a DFT study with van der Waals interactions[J]. Applied Surface Science, 2015, 339: 36-45. |
42 | Cross R W, Rondiya S R, Dzade N Y. First-principles DFT insights into the adsorption of hydrazine on bimetallic β1-NiZn catalyst: implications for direct hydrazine fuel cells[J]. Applied Surface Science, 2021, 536: 147648. |
43 | Zeng H D, Cheng X L, Wang W. A first-principles study on adsorption behaviors of pristine and Li-decorated graphene sheets toward hydrazine molecules[J]. Applied Surface Science, 2018, 435: 848-854. |
44 | Esrafili M D, Mokhtar Teymurian V, Nurazar R. Catalytic dehydrogenation of hydrazine on silicon-carbide nanotubes: a DFT study on the kinetic issue[J]. Surface Science, 2015, 632: 118-125. |
45 | Maurel R, Menezo J C. Catalytic decomposition of 15N-labeled hydrazine on alumina-supported metals[J]. Journal of Catalysis, 1978, 51(2): 293-295. |
46 | Huang S X, Rufael T S, Gland J L. Diimide formation on the Ni(100) surface[J]. Surface Science Letters, 1993, 290(1/2): L673-L676. |
47 | Dai H, Qiu Y P, Dai H B, et al. A study of degradation phenomenon of Ni-Pt/CeO2 catalyst towards hydrogen generation from hydrous hydrazine[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16355-16361. |
48 | Deng Z G, Lu X Q, Wen Z Q, et al. Mechanistic insight into the hydrazine decomposition on Rh(111): effect of reaction intermediate on catalytic activity[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(38): 16172-16182. |
49 | Lu X Y, Francis S, Motta D, et al. Mechanistic study of hydrazine decomposition on Ir(111)[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(7): 3883-3896. |
50 | McKay H L, Jenkins S J, Wales D J. Dissociative chemisorption of hydrazine on an Fe{211} surface[J]. The Journal of Physical Chemistry C, 2011, 115(36): 17812-17828. |
51 | Zhang D X, Yin H, Zhong H F, et al. Linear scaling relations for N2H4 decomposition over transition metal catalysts[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16114-16121. |
52 | Genç A E, Küçük H, Alp I O, et al. Hydrazine decomposition on nickel-embedded graphene[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33407-33418. |
53 | Vogt C, Weckhuysen B M. The concept of active site in heterogeneous catalysis[J]. Nature Reviews Chemistry, 2022, 6(2): 89-111. |
54 | Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. |
55 | Wang H T, Xu S C, Tsai C, et al. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science, 2016, 354(6315): 1031-1036. |
56 | Ferrando R, Jellinek J, Johnston R L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles[J]. Chemical Reviews, 2008, 108(3): 845-910. |
57 | Zhong Y J, Dai H B, Jiang Y Y, et al. Highly efficient Ni@Ni-Pt/La2O3 catalyst for hydrogen generation from hydrous hydrazine decomposition: effect of Ni-Pt surface alloying[J]. Journal of Power Sources, 2015, 300: 294-300. |
58 | Demirci U B, Garin F. Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate[J]. Journal of Alloys and Compounds, 2008, 463(1/2): 107-111. |
59 | He L, Huang Y Q, Wang A Q, et al. Surface modification of Ni/Al2O3 with Pt: highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine[J]. Journal of Catalysis, 2013, 298: 1-9. |
60 | He L, Huang Y Q, Liu X Y, et al. Structural and catalytic properties of supported Ni-Ir alloy catalysts for H2 generation via hydrous hydrazine decomposition[J]. Applied Catalysis B: Environmental, 2014, 147: 779-788. |
61 | Prabu S, Chiang K Y. Magnetically recyclable Co/ZnO@NiFe2O4 nanoparticles as highly active and reusable catalysts for hydrazine monohydrate hydrogen generation[J]. Catalysis Science & Technology, 2021, 11(4): 1544-1557. |
62 | Kang W, Guo H, Varma A. Noble-metal-free NiCu/CeO2 catalysts for H2 generation from hydrous hydrazine[J]. Applied Catalysis B: Environmental, 2019, 249: 54-62. |
63 | Liu X Y, Liu Y, Wang J C, et al. Anatase-type TiO2-modified amorphous NiMo nanoparticles with superior catalytic performance toward dehydrogenation of hydrous hydrazine[J]. Industrial & Engineering Chemistry Research, 2022, 61(4): 1636-1643. |
64 | Bhattacharjee D, Dasgupta S. Trimetallic NiFePd nanoalloy catalysed hydrogen generation from alkaline hydrous hydrazine and sodium borohydride at room temperature[J]. Journal of Materials Chemistry A, 2015, 3(48): 24371-24378. |
65 | Qiu Y P, Cao G X, Wen H, et al. High-capacity hydrogen generation from hydrazine monohydrate using a noble-metal-free Ni10Mo/Ni-Mo-O nanocatalyst[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15110-15117. |
66 | Wang J, Li W, Wen Y R, et al. Rh-Ni-B nanoparticles as highly efficient catalysts for hydrogen generation from hydrous hydrazine[J]. Advanced Energy Materials, 2015, 5(10): 1401879. |
67 | Du X Q, Cai P, Luo W, et al. Facile synthesis of P-doped Rh nanoparticles with superior catalytic activity toward dehydrogenation of hydrous hydrazine[J]. International Journal of Hydrogen Energy, 2017, 42(9): 6137-6143. |
68 | Liu T, Yu J H, Bie H Y, et al. Highly efficient hydrogen generation from hydrous hydrazine using a reduced graphene oxide-supported NiPtP nanoparticle catalyst[J]. Journal of Alloys and Compounds, 2017, 690: 783-790. |
69 | Wang J, Li Y, Zhang Y. Precious-metal-free nanocatalysts for highly efficient hydrogen production from hydrous hydrazine[J]. Advanced Functional Materials, 2014, 24(45): 7073-7077. |
70 | Oliaee S N, Zhang C L, Hwang S Y, et al. Hydrogen production via hydrazine decomposition on model platinum-nickel nanocatalyst with a single (111) facet[J]. The Journal of Physical Chemistry C, 2016, 120(18): 9764-9772. |
71 | Yang F, Li Y Z, Chu W, et al. Mesoporous Co-B-N-H nanowires: superior catalysts for decomposition of hydrous hydrazine to generate hydrogen[J]. Catalysis Science & Technology, 2014, 4(9): 3168-3179. |
72 | Fu Q L, Yang P, Wang J C, et al. In situ synthesis of Ni nanofibers via vacuum thermal reduction and their efficient catalytic properties for hydrogen generation[J]. Journal of Materials Chemistry A, 2018, 6(24): 11370-11376. |
73 | Wang H F, Fu Q L, Zhang G Y, et al. The synthesis of Ni-Cu alloy nanofibers via vacuum thermal co-reduction toward hydrogen generation from hydrazine decomposition[J]. Catalysis Letters, 2019, 149(1): 77-83. |
74 | Wang K, Yao Q L, Qing S J, et al. La(OH)3 nanosheet-supported CoPt nanoparticles: a highly efficient and magnetically recyclable catalyst for hydrogen production from hydrazine in aqueous solution[J]. Journal of Materials Chemistry A, 2019, 7(16): 9903-9911. |
75 | Prabu S, Vinu M, Chiang K Y. Metal nanoparticles supported on crystalline Al(OH)3 nano sheets for efficient catalytic hydrogen production from hydrous hydrazine in aqueous solution[J]. International Journal of Energy Research, 2021, 45(13): 18857-18874. |
76 | Wu D D, Wen M, Lin X J, et al. A NiCo/NiO-CoO x ultrathin layered catalyst with strong basic sites for high-performance H2 generation from hydrous hydrazine[J]. Journal of Materials Chemistry A, 2016, 4(17): 6595-6602. |
77 | Singh S K, Singh A K, Aranishi K, et al. Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. Journal of the American Chemical Society, 2011, 133(49): 19638-19641. |
78 | Singh A K, Xu Q. Highly-dispersed surfactant-free bimetallic Ni-Pt nanoparticles as high-performance catalyst for hydrogen generation from hydrous hydrazine[J]. International Journal of Hydrogen Energy, 2014, 39(17): 9128-9134. |
79 | Bhattacharjee D, Mandal K, Dasgupta S. High performance nickel-palladium nanocatalyst for hydrogen generation from alkaline hydrous hydrazine at room temperature[J]. Journal of Power Sources, 2015, 287: 96-99. |
80 | Wang J, Zhang X B, Wang Z L, et al. Rhodium-nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage[J]. Energy & Environmental Science, 2012, 5(5): 6885. |
81 | Liu Y, Zhang H, Ma C, et al. Modified nimo nanoparticles for efficient catalytic hydrogen generation from hydrous hydrazine[J]. Catalysts, 2019, 9(7): 596. |
82 | Wang H F, Wu L M, Wang Y S, et al. Facile synthesis of Ni nanoparticles from triangular Ni(HCO3)2 nanosheets as catalysts for hydrogen generation from hydrous hydrazine[J]. Catalysis Communications, 2017, 100: 33-37. |
83 | Rosca V, Duca M, de Groot M T, et al. Nitrogen cycle electrocatalysis[J]. Chemical Reviews, 2009, 109(6): 2209-2244. |
84 | Yamada K, Asazawa K, Yasuda K, et al. Investigation of PEM type direct hydrazine fuel cell[J]. Journal of Power Sources, 2003, 115(2): 236-242. |
85 | He L, Huang Y Q, Wang A Q, et al. A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from N2H4⋅H2O decomposition[J]. Angewandte Chemie, 2012, 124(25): 6295-6298. |
86 | Gao W, Li C M, Chen H, et al. Supported nickel-iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O[J]. Green Chemistry, 2014, 16(3): 1560-1568. |
87 | Song F Z, Zhu Q L, Xu Q. Monodispersed PtNi nanoparticles deposited on diamine-alkalized graphene for highly efficient dehydrogenation of hydrous hydrazine at room temperature[J]. Journal of Materials Chemistry A, 2015, 3(46): 23090-23094. |
88 | Du Y S, Su J, Luo W, et al. Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1031-1034. |
89 | Jiang R, Qu X P, Zeng F N, et al. MOF-74-immobilized ternary RhNiP nanoparticles as highly efficient hydrous hydrazine dehydrogenation catalysts in alkaline solutions[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6383-6391. |
90 | Song X, Yang P, Wang J C, et al. NiFePd/UiO-66 nanocomposites as highly efficient catalysts to accelerate hydrogen evolution from hydrous hydrazine[J]. Inorganic Chemistry Frontiers, 2019, 6(10): 2727-2735. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[12] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[13] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[14] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[15] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||