CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2183-2193.DOI: 10.11949/0438-1157.20220006
• Energy and environmental engineering • Previous Articles Next Articles
Yanping JIA1(),Xue DING1,Jian GANG1,Zewei TONG2,Haifeng ZHANG1,Lanhe ZHANG1()
Received:
2022-01-04
Revised:
2022-03-27
Online:
2022-05-24
Published:
2022-05-05
Contact:
Lanhe ZHANG
贾艳萍1(),丁雪1,刚健1,佟泽为2,张海丰1,张兰河1()
通讯作者:
张兰河
作者简介:
贾艳萍(1973—),女,博士,教授,基金资助:
CLC Number:
Yanping JIA, Xue DING, Jian GANG, Zewei TONG, Haifeng ZHANG, Lanhe ZHANG. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater[J]. CIESC Journal, 2022, 73(5): 2183-2193.
贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193.
Add to citation manager EndNote|Ris|BibTeX
编码 | 因素 | 单位 | 水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
A | 初始pH | — | 2 | 3 | 4 |
B | 反应时间 | h | 1 | 1.5 | 2 |
C | Fe/Mn质量比 | — | 2 | 3 | 4 |
D | 填料总投加量 | g/L | 80 | 100 | 120 |
Table 1 The experimental factor and level design for response surface
编码 | 因素 | 单位 | 水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
A | 初始pH | — | 2 | 3 | 4 |
B | 反应时间 | h | 1 | 1.5 | 2 |
C | Fe/Mn质量比 | — | 2 | 3 | 4 |
D | 填料总投加量 | g/L | 80 | 100 | 120 |
序号 | 变量取值 | COD去除率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 0 | -1 | 0 | -1 | 78.4 |
2 | 0 | 1 | 1 | 0 | 80.5 |
3 | 1 | 0 | 0 | 1 | 78.6 |
4 | 0 | 0 | 1 | 1 | 82.5 |
5 | 0 | 1 | 0 | 1 | 74.2 |
6 | 1 | -1 | 0 | 0 | 79.5 |
7 | -1 | -1 | 0 | 0 | 77.9 |
8 | 0 | 0 | 0 | 0 | 87.2 |
9 | 0 | 0 | -1 | -1 | 82.1 |
10 | 1 | 0 | 1 | 0 | 81.9 |
11 | 0 | 1 | 0 | -1 | 83.9 |
12 | -1 | 1 | 0 | 0 | 81.8 |
13 | 1 | 0 | -1 | 0 | 79.2 |
14 | -1 | 0 | 1 | 0 | 83.0 |
15 | -1 | 0 | -1 | 0 | 83.9 |
16 | 0 | 0 | 0 | 0 | 87.3 |
17 | 0 | -1 | 1 | 0 | 80.2 |
18 | 0 | -1 | -1 | 0 | 78.2 |
19 | 0 | 0 | 0 | 0 | 86.3 |
20 | 0 | 0 | 1 | -1 | 85.3 |
21 | 0 | 0 | 0 | 0 | 87.6 |
22 | 1 | 0 | 0 | -1 | 80.6 |
23 | 0 | 0 | 0 | 0 | 87.9 |
24 | 0 | 0 | -1 | 1 | 80.2 |
25 | 0 | 1 | -1 | 0 | 81.6 |
26 | -1 | 0 | 0 | 1 | 80.9 |
27 | -1 | 0 | 0 | -1 | 84.0 |
28 | 0 | -1 | 0 | 1 | 77.9 |
29 | 1 | 1 | 0 | 0 | 78.5 |
Table 2 Experiment design and experimental results of response surface test group
序号 | 变量取值 | COD去除率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 0 | -1 | 0 | -1 | 78.4 |
2 | 0 | 1 | 1 | 0 | 80.5 |
3 | 1 | 0 | 0 | 1 | 78.6 |
4 | 0 | 0 | 1 | 1 | 82.5 |
5 | 0 | 1 | 0 | 1 | 74.2 |
6 | 1 | -1 | 0 | 0 | 79.5 |
7 | -1 | -1 | 0 | 0 | 77.9 |
8 | 0 | 0 | 0 | 0 | 87.2 |
9 | 0 | 0 | -1 | -1 | 82.1 |
10 | 1 | 0 | 1 | 0 | 81.9 |
11 | 0 | 1 | 0 | -1 | 83.9 |
12 | -1 | 1 | 0 | 0 | 81.8 |
13 | 1 | 0 | -1 | 0 | 79.2 |
14 | -1 | 0 | 1 | 0 | 83.0 |
15 | -1 | 0 | -1 | 0 | 83.9 |
16 | 0 | 0 | 0 | 0 | 87.3 |
17 | 0 | -1 | 1 | 0 | 80.2 |
18 | 0 | -1 | -1 | 0 | 78.2 |
19 | 0 | 0 | 0 | 0 | 86.3 |
20 | 0 | 0 | 1 | -1 | 85.3 |
21 | 0 | 0 | 0 | 0 | 87.6 |
22 | 1 | 0 | 0 | -1 | 80.6 |
23 | 0 | 0 | 0 | 0 | 87.9 |
24 | 0 | 0 | -1 | 1 | 80.2 |
25 | 0 | 1 | -1 | 0 | 81.6 |
26 | -1 | 0 | 0 | 1 | 80.9 |
27 | -1 | 0 | 0 | -1 | 84.0 |
28 | 0 | -1 | 0 | 1 | 77.9 |
29 | 1 | 1 | 0 | 0 | 78.5 |
变差来源 | 平方和 | 自由度 | 均方和 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 320.45 | 14 | 22.89 | 22.76 | <0.0001 | 极显著 |
A | 14.39 | 1 | 14.39 | 14.31 | 0.0020 | 极显著 |
B | 5.77 | 1 | 5.77 | 5.74 | 0.0312 | 显著 |
C | 5.35 | 1 | 5.35 | 5.32 | 0.0370 | 显著 |
D | 33.70 | 1 | 33.70 | 33.51 | <0.0001 | 极显著 |
AB | 6.15 | 1 | 6.15 | 6.11 | 0.0268 | 显著 |
AC | 3.24 | 1 | 3.24 | 3.22 | 0.0943 | 不显著 |
AD | 0.30 | 1 | 0.30 | 0.30 | 0.5921 | 不显著 |
BC | 2.42 | 1 | 2.42 | 2.40 | 0.1433 | 不显著 |
BD | 20.84 | 1 | 20.84 | 20.72 | 0.0005 | 极显著 |
CD | 0.20 | 1 | 0.20 | 0.20 | 0.6605 | 不显著 |
A2 | 60.04 | 1 | 60.04 | 59.69 | <0.0001 | 极显著 |
B2 | 174.37 | 1 | 174.37 | 173.36 | <0.0001 | 极显著 |
C2 | 23.88 | 1 | 23.88 | 23.74 | 0.0002 | 极显著 |
D2 | 65.74 | 1 | 65.74 | 65.36 | <0.0001 | 极显著 |
残差 | 14.08 | 14 | 1.01 | |||
失拟项 | 12.67 | 10 | 1.27 | 3.59 | 0.1149 | 不显著 |
误差 | 1.41 | 4 | 0.35 | |||
合计 | 334.53 | 28 | ||||
标准偏差 | 1.00 | 相关系数 | 0.9579 | |||
平均值 | 81.76 | 校正决定系数 | 0.9158 | |||
变异系数 | 1.23 | 预测相关系数 | 0.7753 | |||
压力系数 | 75.18 | 信噪比 | 16.129 |
Table 3 Variance analysis of COD removal efficiency (response value Y) model
变差来源 | 平方和 | 自由度 | 均方和 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 320.45 | 14 | 22.89 | 22.76 | <0.0001 | 极显著 |
A | 14.39 | 1 | 14.39 | 14.31 | 0.0020 | 极显著 |
B | 5.77 | 1 | 5.77 | 5.74 | 0.0312 | 显著 |
C | 5.35 | 1 | 5.35 | 5.32 | 0.0370 | 显著 |
D | 33.70 | 1 | 33.70 | 33.51 | <0.0001 | 极显著 |
AB | 6.15 | 1 | 6.15 | 6.11 | 0.0268 | 显著 |
AC | 3.24 | 1 | 3.24 | 3.22 | 0.0943 | 不显著 |
AD | 0.30 | 1 | 0.30 | 0.30 | 0.5921 | 不显著 |
BC | 2.42 | 1 | 2.42 | 2.40 | 0.1433 | 不显著 |
BD | 20.84 | 1 | 20.84 | 20.72 | 0.0005 | 极显著 |
CD | 0.20 | 1 | 0.20 | 0.20 | 0.6605 | 不显著 |
A2 | 60.04 | 1 | 60.04 | 59.69 | <0.0001 | 极显著 |
B2 | 174.37 | 1 | 174.37 | 173.36 | <0.0001 | 极显著 |
C2 | 23.88 | 1 | 23.88 | 23.74 | 0.0002 | 极显著 |
D2 | 65.74 | 1 | 65.74 | 65.36 | <0.0001 | 极显著 |
残差 | 14.08 | 14 | 1.01 | |||
失拟项 | 12.67 | 10 | 1.27 | 3.59 | 0.1149 | 不显著 |
误差 | 1.41 | 4 | 0.35 | |||
合计 | 334.53 | 28 | ||||
标准偏差 | 1.00 | 相关系数 | 0.9579 | |||
平均值 | 81.76 | 校正决定系数 | 0.9158 | |||
变异系数 | 1.23 | 预测相关系数 | 0.7753 | |||
压力系数 | 75.18 | 信噪比 | 16.129 |
1 | Hata M, Amano Y, Thiravetyan P, et al. Preparation of bamboo chars and bamboo activated carbons to remove color and COD from ink wastewater[J]. Water Environment Research, 2016, 88(1): 87-96. |
2 | Khannous L, Elleuch A, Fendri I, et al. Treatment of printing wastewater by a combined process of coagulation and biosorption for a possible reuse in agriculture[J]. Desalination and Water Treatment, 2016, 57(13): 5723-5729. |
3 | 何德文, 秦艳, 王伟良, 等. 超声氧化联合处理油墨废水试验研究[J]. 中南大学学报(自然科学版), 2009, 40(6): 1482-1487. |
He D W, Qin Y, Wang W L, et al. Experimental research on treatment of ink wastewater by combination technology of ultrasonic irradiation and Fenton oxidation[J]. Journal of Central South University (Science and Technology), 2009, 40(6): 1482-1487. | |
4 | 曹瑞春, 魏先福, 王琪, 等. 水性油墨分散技术研究进展[J]. 精细化工, 2017, 34(3): 241-249. |
Cao R C, Wei X F, Wang Q, et al. Research progress on dispersion technique of water-based ink[J]. Fine Chemicals, 2017, 34(3): 241-249. | |
5 | Bhaviva R R, Umadevi M, Parimaladevi R. Enhanced photocatalytic degradation of textile dyeing wastewater under UV and visible light using ZnO/MgO nanocomposites as a novel photocatalyst[J]. Particulate Science and Technology, 2020, 38(7): 812-820. |
6 | Bae W, Han D, Kim E, et al. Enhanced bioremoval of refractory compounds from dyeing wastewater using optimized sequential anaerobic/aerobic process[J]. International Journal of Environmental Science and Technology, 2016, 13(7): 1675-1684. |
7 | Zhang L L, Yue Q Y, Yang K L, et al. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: investigation on pollutants removal and degradation mechanisms[J]. Journal of Hazardous Materials, 2018, 342: 705-714. |
8 | 张先炳. 臭氧/微电解工艺处理活性偶氮染料废水的效能与作用机制[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Zhang X B. Treatment efficiency and mechanism of reactive azo dyes containning wastewater by ozonated internal electrolytic process[D]. Harbin: Harbin Institute of Technology, 2015. | |
9 | Yang B, Gao Y Y, Yan D M, et al. Degradation characteristics of color index direct blue 15 dye using iron-carbon micro-electrolysis coupled with H2O2 [J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1523. |
10 | 张涛, 呼世斌, 周丹. 铁屑微电解法处理水性油墨废水的研究[J]. 环境污染治理技术与设备, 2005, 6(5): 67-70. |
Zhang T, Hu S B, Zhou D. A study on water-based ink wastewater treatment with ferric filings micro electrolysis[J]. Techniques and Equipment for Environmental Pollution Control, 2005, 6(5): 67-70. | |
11 | 王顺, 柳荣展, 张宾, 等. 混凝-热固化-微电解法处理高浓度水性油墨废水[J]. 水处理技术, 2015, 41(4): 122-124, 131. |
Wang S, Liu R Z, Zhang B, et al. Treating water-based ink wastewater by coagulation-thermocuring-micro electrolysis[J]. Technology of Water Treatment, 2015, 41(4): 122-124, 131. | |
12 | 石键韵, 陈欣义. 微电解处理技术在PCB油墨废水预处理的试验研究[J]. 广东化工, 2012, 39(2): 237-238, 234. |
Shi J Y, Chen X Y. The study of treatment of electroplating PCB printing wastewater by Fe-C micro-electrolysis process[J]. Guangdong Chemical Industry, 2012, 39(2): 237-238, 234. | |
13 | Tebo B M, Bargar J R, Clement B G, et al. Biogenic manganese oxides: properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 287-328. |
14 | 李彤, 杨浩, 杨凯文, 等. 铁-锰-碳微电解法处理对苯二酚废水[J]. 化工环保, 2015, 35(2): 127-131. |
Li T, Yang H, Yang K W, et al. Treatment of hydroquinone-containing wastewater by Fe-Mn-C microelectrolysis process[J]. Environmental Protection of Chemical Industry, 2015, 35(2): 127-131. | |
15 | 周升旺. MnCl2介质中金属锰与水的反应[J]. 中国锰业, 2008, 26(4): 37-40. |
Zhou S W. A study of reaction between metallic manganese and water in MnCl2 solution[J]. China’s Manganese Industry, 2008, 26(4): 37-40. | |
16 | 俸志荣, 焦纬洲, 刘有智, 等. 铁碳微电解处理含硝基苯废水[J]. 化工学报, 2015, 66(3): 1150-1155. |
Feng Z R, Jiao W Z, Liu Y Z, et al. Treatment of nitrobenzene-containing wastewater by iron-carbon micro-electrolysis[J]. CIESC Journal, 2015, 66(3): 1150-1155. | |
17 | 杨颖, 潘兆平, 李绮丽, 等. 响应面法优化赣南脐橙全果果酱微波制作工艺[J]. 中国食品学报, 2020, 20(12): 167-175. |
Yang Y, Pan Z P, Li Q L, et al. Optimization of microwave production process of Gannan navel orange whole fruit jam by response surface methodology[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(12): 167-175. | |
18 | 陈凡雨, 徐仲, 尤宏, 等. 缺氧MBR-MMR处理海水养殖废水性能及膜污染特性[J]. 环境科学, 2020, 41(6): 2762-2770. |
Chen F Y, Xu Z, You H, et al. Performance and membrane fouling characteristics of mariculture wastewater treated by anoxic MBR-MMR[J]. Environmental Science, 2020, 41(6): 2762-2770. | |
19 | Ding Y, Tian Y, Li Z P, et al. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor[J]. Bioresource Technology, 2015, 192: 105-114. |
20 | 张兰河, 张明爽, 郭静波, 等. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098. |
Zhang L H, Zhang M S, Guo J B, et al. Transformation of Fe3+ and its effect on anoxic sludge flocculation in A2O process[J]. CIESC Journal, 2019, 70(3): 1089-1098. | |
21 | 贾艳萍, 单晓倩, 宋祥飞, 等. 响应面法优化餐饮废水混凝工艺研究[J]. 化工学报, 2021, 72(9): 4931-4940. |
Jia Y P, Shan X Q, Song X F, et al. Optimization of coagulation process of catering wastewater by response surface methodology[J]. CIESC Journal, 2021, 72(9): 4931-4940. | |
22 | 陈炜鸣, 张爱平, 李民, 等. O3/H2O2降解垃圾渗滤液浓缩液的氧化特性及光谱解析[J]. 中国环境科学, 2017, 37(6): 2160-2172. |
Chen W M, Zhang A P, Li M, et al. Decomposition of organics in concentrated landfill leachate with ozone/hydrogen peroxide system: oxidation characteristics and spectroscopic analyses[J]. China Environmental Science, 2017, 37(6): 2160-2172. | |
23 | 邓禺南, 陈炜鸣, 罗梓尹, 等. MnO2催化O3处理准好氧矿化垃圾床渗滤液尾水中难降解有机物[J]. 中国环境科学, 2018, 38(11): 4130-4140. |
Deng Y N, Chen W M, Luo Z Y, et al. Removal of refractory organics from SAARB treated landfill leachate by O3/MnO2 process[J]. China Environmental Science, 2018, 38(11): 4130-4140. | |
24 | 李平, 高星, 吴锦华, 等. 垃圾焚烧厂渗滤液处置工艺中溶解性有机物变化特性[J]. 中国环境科学, 2014, 34(9): 2279-2284. |
Li P, Gao X, Wu J H, et al. Characteristics of dissolved organic matters in waste incineration plant leachate treatment process[J]. China Environmental Science, 2014, 34(9): 2279-2284. | |
25 | 张正义, 张千, 楼紫阳, 等. 催化臭氧氧化处理渗滤液RO浓液的氧化特性及光谱分析[J]. 化工学报, 2021, 72(10): 5362-5371. |
Zhang Z Y, Zhang Q, Lou Z Y, et al. Oxidation characteristics and spectral analysis of leachate reverse osmosis concentrate by catalytic ozonation[J]. CIESC Journal, 2021, 72(10): 5362-5371. | |
26 | Imai A, Onuma K, Inamori Y, et al. Effects of pre-ozonation in refractory leachate treatment by the biological activated carbon fluidized bed process[J]. Environmental Technology, 1998, 19(2): 213-221. |
27 | 张春华, 黄廷林, 方开凯, 等. 同温混合初期主库区沉积物间隙水DOM的光谱特征: 以周村水库为例[J]. 中国环境科学, 2016, 36(10): 3048-3055. |
Zhang C H, Huang T L, Fang K K, et al. Spectral characteristics of DOM in sediment interstitial water of the main reservoir area during the initial stage of isothermal mixing: a case study of Zhoucun Reservoir[J]. China Environmental Science, 2016, 36(10): 3048-3055. | |
28 | 汤超, 廖宗廷, 钟倩, 等. 新疆软玉仔料中黑色树枝状物质的拉曼光谱和显微结构特征[J]. 光谱学与光谱分析, 2017, 37(2): 456-460. |
Tang C, Liao Z T, Zhong Q, et al. Raman spectra and microstructure characteristics of dendrite in Xinjiang nephrite gravel[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 456-460. | |
29 | 许淳淳, 王紫色, 王菊琳. 模拟土壤介质中仿古铸铁腐蚀产物的形貌及其生长过程[J]. 化工学报, 2005, 56(12): 2373-2379. |
Xu C C, Wang Z S, Wang J L. Appearance and formation process of corrosion products on archaeological iron in simulated soil media[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(12): 2373-2379. | |
30 | 曹佩根, 徐浩元, 曹文东, 等. 3.4%NaCl介质中铁点蚀行为的表面拉曼光谱成像研究[J]. 光谱学与光谱分析, 2000, 20(6): 800-802. |
Cao P G, Xu H Y, Cao W D, et al. Two-dimensional surface Raman imaging of a roughened iron electrode in saline solution[J]. Spectroscopy and Spectral Analysis, 2000, 20(6): 800-802. | |
31 | 顾伟, 曹佩根, 顾仁敖. 表面增强拉曼光谱在铁腐蚀与防护研究中的应用[J]. 光谱学与光谱分析, 2005, 25(9): 1412-1417. |
Gu W, Cao P G, Gu R A. Surface-enhanced Raman spectroscopy in studies of corrosion and inhibition on an iron surface[J]. Spectroscopy and Spectral Analysis, 2005, 25(9): 1412-1417. | |
32 | 张亚萍, 王金慧, 于濂清, 等. 气相法原位合成氧化铁/黄铁矿材料及其光电性能[J]. 中国石油大学学报(自然科学版), 2019, 43(2): 171-176. |
Zhang Y P, Wang J H, Yu L Q, et al. In situ synthesis of iron oxide/pyrite composite by vapour deposition process and its photoelectricity properties[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(2): 171-176. | |
33 | 段鉴书, 李艳, 许晓明, 等. 三斜水钠锰矿层间阳离子交换作用的拉曼谱学[J]. 地球科学, 2018, 43(5): 1623-1634. |
Duan J S, Li Y, Xu X M, et al. Raman spectroscopy of ion exchange in interlayer of triclinic birnessite[J]. Earth Science, 2018, 43(5): 1623-1634. | |
34 | 童庆松, 杨勇, 连锦明. 掺钛电解二氧化锰制掺杂LiMn2O4的电化学性能[J]. 无机化学学报, 2005, 21(12): 1784-1790. |
Tong Q S, Yang Y, Lian J M. Electrochemical performance of doped LiMn2O4 synthesized by used titanium doped electrolytic manganese dioxide[J]. Chinese Journal of Inorganic Chemistry, 2005, 21(12): 1784-1790. | |
35 | 何婧, 徐志广, 曾允秀, 等. 取代基对咔咯锰(V)-氧配合物Mn―O的成键影响[J]. 物理化学学报, 2012, 28(7): 1658-1664. |
He J, Xu Z G, Zeng Y X, et al. Effect of substituents on Mn―O bond in oxo-manganese(V) corrole complexes[J]. Acta Physico-Chimica Sinica, 2012, 28(7): 1658-1664. | |
36 | 焦金珍, 李时卉, 黄碧纯. 石墨烯负载MnO x 催化剂的制备及其低温NH3-SCR活性[J]. 物理化学学报, 2015, 31(7): 1383-1390. |
Jiao J Z, Li S H, Huang B C. Preparation of manganese oxides supported on graphene catalysts and their activity in low-temperature NH3-SCR[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1383-1390. | |
37 | 朱秀清, 王子玥, 李美莹, 等. 热处理对汉麻乳稳定性的影响及蛋白结构表征[J]. 食品科学, 2021, 42(7): 68-73. |
Zhu X Q, Wang Z Y, Li M Y, et al. Effect of heat treatment on the stability of hemp seed milk and characterization of protein structure[J]. Food Science, 2021, 42(7): 68-73. | |
38 | 崔翔, 朱长歧, 胡明鉴, 等. 珊瑚砂渗透性的微观机理研究[J]. 岩土工程学报, 2020, 42(12): 2336-2341. |
Cui X, Zhu C Q, Hu M J, et al. Microscopic mechanism of permeability of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2336-2341. | |
39 | 张学铭, 何北海, 李军荣, 等. pH值和金属阳离子对水性油墨胶体稳定性的影响[J]. 中国造纸学报, 2007, 22(1): 59-62. |
Zhang X M, He B H, Li J R, et al. Effect of inorganic electrolytes on the colloidal stability of water-based inks[J]. Transactions of China Pulp and Paper, 2007, 22(1): 59-62. | |
40 | 贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801. |
Jia Y P, Zhang Z, Tong Z W, et al. Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4): 1791-1801. | |
41 | 王新鸽, 程芸, 朱荣耀, 等. 不同化学助剂对水性印刷油墨颗粒粒径的影响[J]. 包装工程, 2019, 40(13): 129-136. |
Wang X G, Cheng Y, Zhu R Y, et al. Effects of different chemical additives on the particle size of water-based printing ink particles[J]. Packaging Engineering, 2019, 40(13): 129-136. | |
42 | 肖淑敏, 赵建海, 魏磊, 等. 搅拌条件对氢氧化镁混凝性能及絮体特性的影响[J]. 化工进展, 2018, 37(2): 761-766. |
Xiao S M, Zhao J H, Wei L, et al. Effects of mixing on magnesium hydroxide coagulation performance and floc properties[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 761-766. | |
43 | 曾悦. 物化生化组合工艺处理染料废水的研究与应用[D]. 南昌: 南昌大学, 2018. |
Zeng Y. Study and application of the treatment of dye wastewater by the physical-chemical and biochemical combined processes[D]. Nanchang: Nanchang University, 2018. | |
44 | Zhang W X, Li X M, Yang Q, et al. Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system[J]. Chemosphere, 2019, 216: 749-756. |
45 | 潘碌亭, 吴锦峰, 罗华飞. 微电解-UASB-接触氧化处理羧甲基纤维素废水[J]. 化工学报, 2010, 61(5): 1275-1281. |
Pan L T, Wu J F, Luo H F. Microelectrolysis-UASB-contact oxidation process for treatment of carboxymethyl cellulose production wastewater[J]. CIESC Journal, 2010, 61(5): 1275-1281. | |
46 | 杨硕, 余薇薇, 杨伦, 等. 纳米零价铁降解水中17β-雌二醇的作用机制[J]. 化工进展, 2020, 39(9): 3826-3834. |
Yang S, Yu W W, Yang L, et al. Degradation mechanism of 17β-estradiol by nano-zero valent iron in aqueous solution[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3826-3834. | |
47 | 盛超. 锰炭微电解填料的制备及在有机工业废水处理中的应用[D]. 武汉: 武汉理工大学, 2017. |
Sheng C. The preparation of manganese-carbon micro-electrolysis packing and its application in organic industrial wastewater[D]. Wuhan: Wuhan University of Technology, 2017. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
[11] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[12] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[13] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[14] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[15] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||