CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2279-2287.DOI: 10.11949/0438-1157.20211680
• Material science and engineering, nanotechnology • Previous Articles
Chaoyu SONG1(),Yaxuan XIONG1(),Jinhua ZHANG2,Yuhe JIN1,Chenhua YAO1,Huixiang WANG1,Yulong DING3
Received:
2021-11-26
Revised:
2022-03-08
Online:
2022-05-24
Published:
2022-05-05
Contact:
Yaxuan XIONG
宋超宇1(),熊亚选1(),张金花2,金宇贺1,药晨华1,王辉祥1,丁玉龙3
通讯作者:
熊亚选
作者简介:
宋超宇(1998—),女,硕士研究生,基金资助:
CLC Number:
Chaoyu SONG, Yaxuan XIONG, Jinhua ZHANG, Yuhe JIN, Chenhua YAO, Huixiang WANG, Yulong DING. Preparation and performance study of incinerated slag based shape-stable phase change composites[J]. CIESC Journal, 2022, 73(5): 2279-2287.
宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
Add to citation manager EndNote|Ris|BibTeX
Al2O3 | SiO2 | P2O5 | CaO | Fe2O3 | MgO | Others |
---|---|---|---|---|---|---|
37% | 24.9% | 17.3% | 7.7% | 5.7% | 2.6% | 4.8% |
Table 1 Chemical compositions of the incinerated slag of municipal sludge
Al2O3 | SiO2 | P2O5 | CaO | Fe2O3 | MgO | Others |
---|---|---|---|---|---|---|
37% | 24.9% | 17.3% | 7.7% | 5.7% | 2.6% | 4.8% |
样品编号 | 污泥炉渣/ %(质量) | 硝酸钠/ %(质量) | 定型复合相变储热 材料实物 |
---|---|---|---|
SS0 | 0 | 100 | |
SS1 | 60 | 40 | |
SS2 | 55 | 45 | |
SS3 | 50 | 50 | |
SS4 | 45 | 55 | |
SS5 | 40 | 60 |
Table 2 Composition and appearance of shape-stable phase change composites
样品编号 | 污泥炉渣/ %(质量) | 硝酸钠/ %(质量) | 定型复合相变储热 材料实物 |
---|---|---|---|
SS0 | 0 | 100 | |
SS1 | 60 | 40 | |
SS2 | 55 | 45 | |
SS3 | 50 | 50 | |
SS4 | 45 | 55 | |
SS5 | 40 | 60 |
项目 | 熔点(熔化 起始温度)/°C | 熔化终止 温度/°C | 潜热/(J/g) | 质量/mg |
---|---|---|---|---|
500次加热/冷却循环前 | 303.7 | 316.2 | 60.33 | 1000 |
500次加热/冷却循环后 | 303.8 | 318.1 | 55.61 | 960 |
Table 3 Change of thermal performance and mass of sample SS3 before and after cycling
项目 | 熔点(熔化 起始温度)/°C | 熔化终止 温度/°C | 潜热/(J/g) | 质量/mg |
---|---|---|---|---|
500次加热/冷却循环前 | 303.7 | 316.2 | 60.33 | 1000 |
500次加热/冷却循环后 | 303.8 | 318.1 | 55.61 | 960 |
1 | Li Q, Cong L, Zhang X S, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110511. |
2 | Zhu J Q, Li R G, Zhou W B, et al. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(5): 950-954. |
3 | Yu Q H, Jiang Z, Cong L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377. |
4 | Zhong L M, Zhang X W, Luan Y, et al. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite[J]. Solar Energy, 2014, 107: 63-73. |
5 | Liu J W, Wang Q H, Ling Z Y, et al. A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion[J]. Solar Energy Materials and Solar Cells, 2017, 169: 280-286. |
6 | Lachheb M, Adili A, Albouchi F, et al. Thermal properties improvement of lithium nitrate/graphite composite phase change materials[J]. Applied Thermal Engineering, 2016, 102: 922-931. |
7 | Sang L X, Xu Y W. Form stable binary chlorides/expanded graphite composite material with enhanced compressive strength for high temperature thermal storage[J]. Journal of Energy Storage, 2020, 31: 101611. |
8 | Chen W C, Liang X H, Wang S F, et al. SiO2 hydrophilic modification of expanded graphite to fabricate form-stable ternary nitrate composite room temperature phase change material for thermal energy storage[J]. Chemical Engineering Journal, 2021, 413: 127549. |
9 | Li Y, Guo B, Huang G F, et al. Eutectic compound (KNO3/NaNO3: PCM) quasi-encapsulated into SiC-honeycomb for suppressing natural convection of melted PCM[J]. International Journal of Energy Research, 2015, 39(6): 789-804. |
10 | Li Y, Guo B, Huang G F, et al. Characterization and thermal performance of nitrate mixture/SiC ceramic honeycomb composite phase change materials for thermal energy storage[J]. Applied Thermal Engineering, 2015, 81: 193-197. |
11 | Leng G H, Qiao G, Jiang Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2018, 217: 212-220. |
12 | Qin Y, Leng G H, Yu X, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282: 37-42. |
13 | Qin Y, Yu X, Leng G H, et al. Effect of diatomite content on diatomite matrix based composite phase change thermal storage material[J]. Materials Research Innovations, 2014, 18(sup2): S2-453. |
14 | Liu S Y, Yang H M. Cover picture: composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material[J]. Energy Technology, 2015, 3(1): 1. |
15 | Zhang T Y, Wang T Y, Wang K C, et al. Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage[J]. Solar Energy, 2021, 227: 468-476. |
16 | Li B R, Tan H, Liu Y, et al. Experimental investigations on the thermal stability of Na2CO3-K2CO3 eutectic salt/ceramic composites for high temperature energy storage[J]. Renewable Energy, 2020, 146: 2556-2565. |
17 | Jiang Z, Jiang F, Li C, et al. A form stable composite phase change material for thermal energy storage applications over 700℃[J]. Applied Sciences, 2019, 9(5): 814. |
18 | Li C, Li Q, Ding Y L. Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: from component to device level performance through modelling[J]. Renewable Energy, 2019, 140: 140-151. |
19 | Sang L X, Li F, Xu Y W. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180: 1-7. |
20 | Deng Y, Li J H, Nian H. Expanded vermiculite: a promising natural encapsulation material of LiNO3, NaNO3, and KNO3 phase change materials for medium-temperature thermal energy storage[J]. Advanced Engineering Materials, 2018, 20(8): 1800135. |
21 | Xu G Z, Leng G H, Yang C Y, et al. Sodium nitrate - diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494-502. |
22 | Li R G, Zhu J Q, Zhou W B, et al. Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials[J]. Applied Thermal Engineering, 2016, 103: 452-458. |
23 | Deng Y, Li J H, Qian T T, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. Journal of Materials Science & Technology, 2017, 33(2): 198-203. |
24 | 王铁营, 王凯晨, 张天影, 等. 粉煤灰高温定型相变储热材料制备及性能表征[J]. 中国科学: 技术科学, 2020, 50(9): 1235-1242. |
Wang T Y, Wang K C, Zhang T Y, et al. High-temperature shape-stable phase-change material based on coal fly ash[J]. Scientia Sinica (Technologica), 2020, 50(9): 1235-1242. | |
25 | Wang T Y, Zhang T Y, Xu G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3 [J]. Solar Energy Materials and Solar Cells, 2020, 206: 110328. |
26 | 关江哲, 朱桂花, 吕硕, 等. 氧化钙对金属/粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 硅酸盐通报, 2020, 39(9): 3008-3013, 3022. |
Guan J Z, Zhu G H, Lyu S, et al. Effect of calcium oxide on thermal storage performance of metal/fly ash-based high temperature form-stable composite phase change material[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 3008-3013, 3022. | |
27 | Qiu F, Song S K, Li D N, et al. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash[J]. Journal of Cleaner Production, 2020, 246: 118952. |
28 | Wang T Y, Wang K C, Ye F, et al. Characterization and thermal properties of a shape-stable Na2CO3-K2CO3/coal fly ash/expanded graphite composite phase change materials for high-temperature thermal energy storage[J]. Journal of Energy Storage, 2021, 33: 102123. |
29 | 王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340. |
Wang Y, Huang Y, Yao H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340. | |
30 | Xiong Y X, Sun M Y, Wu Y T, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9): 11606-11619. |
31 | White L R, Davis H T. Thermal conductivity of molten alkali nitrates[J]. The Journal of Chemical Physics, 1967, 47: 5433-5439. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[5] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[6] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[7] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[8] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[9] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[10] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[11] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[12] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[13] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[14] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[15] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||