CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2708-2721.DOI: 10.11949/0438-1157.20220399
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xiaogang SHI(),Chengxiu WANG,Jinsen GAO,Xingying LAN()
Received:
2022-03-22
Revised:
2022-05-11
Online:
2022-06-30
Published:
2022-06-05
作者简介:
石孝刚(1987—)男,博士,副教授,基金资助:
CLC Number:
Xiaogang SHI, Chengxiu WANG, Jinsen GAO, Xingying LAN. Numerical simulation study on influence of mesoscale structure in riser reactor[J]. CIESC Journal, 2022, 73(6): 2708-2721.
石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
项 目 | 方程表达式 |
---|---|
曳力模型系数β | |
曳力系数修正因子 | |
εg>0.997 | |
0.997>εg>0.99 | |
0.99>εg>0.545 | |
0.545>εg>0.4 |
Table 1 EMMS model equations
项 目 | 方程表达式 |
---|---|
曳力模型系数β | |
曳力系数修正因子 | |
εg>0.997 | |
0.997>εg>0.99 | |
0.99>εg>0.545 | |
0.545>εg>0.4 |
空隙率 | 气速/(m/s) | 短轴 | 长短轴比 | 倾角/(°) | ||
---|---|---|---|---|---|---|
一次反应Hc,1 | 二次反应Hc,2 | |||||
0.83 | 0.1 | 0.67 | 1 | 0 | 0.1560 | 0.8900 |
0.83 | 0.5 | 0.67 | 1 | 0 | 0.1930 | 0.9589 |
0.83 | 1 | 0.67 | 1 | 0 | 0.2107 | 0.9937 |
0.83 | 1.5 | 0.67 | 1 | 0 | 0.2228 | 1.0165 |
0.83 | 2 | 0.67 | 1 | 0 | 0.2325 | 1.0339 |
0.83 | 2.5 | 0.67 | 1 | 0 | 0.2409 | 1.0484 |
0.83 | 3 | 0.67 | 1 | 0 | 0.2485 | 1.0609 |
0.90 | 5 | 0.5 | 1 | 0 | 0.4511 | 1.1105 |
0.90 | 7.5 | 0.5 | 1 | 0 | 0.5242 | 1.1119 |
0.90 | 10 | 0.5 | 1 | 0 | 0.5828 | 1.1073 |
0.96 | 0.5 | 0.5 | 1 | 0 | 0.5638 | 1.0498 |
0.96 | 1 | 0.5 | 1 | 0 | 0.6299 | 1.0522 |
… | … | … | … | … | … | … |
Table 2 Ratio of reaction rate on cluster to that on single particle
空隙率 | 气速/(m/s) | 短轴 | 长短轴比 | 倾角/(°) | ||
---|---|---|---|---|---|---|
一次反应Hc,1 | 二次反应Hc,2 | |||||
0.83 | 0.1 | 0.67 | 1 | 0 | 0.1560 | 0.8900 |
0.83 | 0.5 | 0.67 | 1 | 0 | 0.1930 | 0.9589 |
0.83 | 1 | 0.67 | 1 | 0 | 0.2107 | 0.9937 |
0.83 | 1.5 | 0.67 | 1 | 0 | 0.2228 | 1.0165 |
0.83 | 2 | 0.67 | 1 | 0 | 0.2325 | 1.0339 |
0.83 | 2.5 | 0.67 | 1 | 0 | 0.2409 | 1.0484 |
0.83 | 3 | 0.67 | 1 | 0 | 0.2485 | 1.0609 |
0.90 | 5 | 0.5 | 1 | 0 | 0.4511 | 1.1105 |
0.90 | 7.5 | 0.5 | 1 | 0 | 0.5242 | 1.1119 |
0.90 | 10 | 0.5 | 1 | 0 | 0.5828 | 1.1073 |
0.96 | 0.5 | 0.5 | 1 | 0 | 0.5638 | 1.0498 |
0.96 | 1 | 0.5 | 1 | 0 | 0.6299 | 1.0522 |
… | … | … | … | … | … | … |
Hr表达式 | εg范围 |
---|---|
[0.4,0.4162] | |
[0.4162,0.4257] | |
[0.4257,0.5457] | |
[0.5457,1.0] |
Table 3 Correlation for influence factor of heterogeneous cluster on reaction rate[19]
Hr表达式 | εg范围 |
---|---|
[0.4,0.4162] | |
[0.4162,0.4257] | |
[0.4257,0.5457] | |
[0.5457,1.0] |
参数 | 数 值 |
---|---|
提升管直径D/m | 0.076 |
提升管高度h/m | 10 |
颗粒粒径dp/μm | 76 |
颗粒密度ρp/(kg/m3) | 1780 |
气体密度ρg/(kg/m3) | 1.1795 |
Table 4 Size of simulation set-up and properties of materials
参数 | 数 值 |
---|---|
提升管直径D/m | 0.076 |
提升管高度h/m | 10 |
颗粒粒径dp/μm | 76 |
颗粒密度ρp/(kg/m3) | 1780 |
气体密度ρg/(kg/m3) | 1.1795 |
参 数 | 数值 |
---|---|
原料油质量流率/(t/h) | 152 |
雾化蒸汽质量流率/(t/h) | 9.6 |
预提升蒸汽质量流率/(kg/h) | 4070 |
催化剂循环量/(t/h) | 1156 |
剂油比 | 7 |
物料混合温度/℃ | 550 |
Table 5 Simulation parameter for industrial FCC riser
参 数 | 数值 |
---|---|
原料油质量流率/(t/h) | 152 |
雾化蒸汽质量流率/(t/h) | 9.6 |
预提升蒸汽质量流率/(kg/h) | 4070 |
催化剂循环量/(t/h) | 1156 |
剂油比 | 7 |
物料混合温度/℃ | 550 |
1 | 王成秀, 裴华健, 苏鑫, 等. 密相提升管内颗粒速度与颗粒浓度分布及发展特性[J]. 化学反应工程与工艺, 2020, 36(1): 8-16. |
Wang C X, Pei H J, Su X, et al. Particle velocity and solids holdup characteristics and the flow development in a high density circulating fluidized bed riser[J]. Chemical Reaction Engineering and Technology, 2020, 36(1): 8-16. | |
2 | Zhang H, Huang W X, Zhu J X. Gas-solids flow behavior: CFB riser vs. downer[J]. AIChE Journal, 2001, 47(9): 2000-2011. |
3 | Manyele S V, Pärssinen J H, Zhu J X. Characterizing particle aggregates in a high-density and high-flux CFB riser[J]. Chemical Engineering Journal, 2002, 88(1/2/3): 151-161. |
4 | Wang J W, Ge W, Li J H. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J]. Chemical Engineering Science, 2008, 63(6): 1553-1571. |
5 | Rossbach V, Padoin N, Meier H F, et al. Influence of ultrasonic waves on the gas-solid flow and the solids dispersion in a CFB riser: numerical and experimental study[J]. Powder Technology, 2021, 389: 430-449. |
6 | Jiradilok V, Gidaspow D, Damronglerd S, et al. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser[J]. Chemical Engineering Science, 2006, 61(17): 5544-5559. |
7 | Yin L J, Wang S Y, Lu H L, et al. Simulation of effect of catalyst particle cluster on dry methane reforming in circulating fluidized beds[J]. Chemical Engineering Journal, 2007, 131(1/2/3): 123-134. |
8 | Wang S Y, Yin L J, Lu H L, et al. Simulation of effect of catalytic particle clustering on methane steam reforming in a circulating fluidized bed reformer[J]. Chemical Engineering Journal, 2008, 139(1): 136-146. |
9 | 吕林英, 蓝兴英, 吴迎亚, 等. FCC提升管反应器中颗粒聚团对裂化反应的影响[J]. 化工学报, 2015, 66(8): 2920-2928. |
Lyu L Y, Lan X Y, Wu Y Y, et al. Effect of particles cluster on behavior of catalytic cracking reaction in FCC riser[J]. CIESC Journal, 2015, 66(8): 2920-2928. | |
10 | Li J H, Huang W L, Chen J H. Possible roadmap to advancing the knowledge system and tackling challenges from complexity[J]. Chemical Engineering Science, 2021, 237: 116548. |
11 | Shi Z S, Wang W, Li J H. A bubble-based EMMS model for gas-solid bubbling fluidization[J]. Chemical Engineering Science, 2011, 66(22): 5541-5555. |
12 | Guo L, Wu J, Li J H. Complexity at mesoscales: a common challenge in developing artificial intelligence[J]. Engineering, 2019, 5(5): 241-253. |
13 | Cloete S, Amini S, Johansen S T. On the effect of cluster resolution in riser flows on momentum and reaction kinetic interaction[J]. Powder Technology, 2011, 210(1): 6-17. |
14 | Chalermsinsuwan B, Piumsomboon P, Gidaspow D. Kinetic theory based computation of PSRI riser(Ⅰ): Estimate of mass transfer coefficient[J]. Chemical Engineering Science, 2009, 64(6): 1195-1211. |
15 | Chalermsinsuwan B, Piumsomboon P, Gidaspow D. Kinetic theory based computation of PSRI riser(Ⅱ): Computation of mass transfer coefficient with chemical reaction[J]. Chemical Engineering Science, 2009, 64(6): 1212-1222. |
16 | Holloway W, Sundaresan S. Filtered models for reacting gas-particle flows[J]. Chemical Engineering Science, 2012, 82: 132-143. |
17 | Dong W G, Wang W, Li J H. A multiscale mass transfer model for gas-solid riser flows(Ⅰ):Sub-grid model and simple tests[J]. Chemical Engineering Science, 2008, 63(10): 2798-2810. |
18 | Hong K, Shi Z S, Wang W, et al. A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow[J]. Chemical Engineering Science, 2013, 99: 191-202. |
19 | Liu C F, Wang W, Zhang N, et al. Structure-dependent multi-fluid model for mass transfer and reactions in gas-solid fluidized beds[J]. Chemical Engineering Science, 2015, 122: 114-129. |
20 | Huang Z Q, Wang L X, Zhou Q. Development of a filtered reaction rate model for reactive gas-solid flows based on fine-grid simulations[J]. AIChE Journal, 2021, 67(5): e17185. |
21 | Zou Z, Yan D, Zhu J Y, et al. Simulation of the fluid–solid noncatalytic reaction based on the structure-based mass-transfer model: shrinking core reaction[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17729-17739. |
22 | Wu Y Y, Peng L, Qin L Q, et al. Validation and application of CPFD models in simulating hydrodynamics and reactions in riser reactor with Geldart A particles[J]. Powder Technology, 2018, 323: 269-283. |
23 | Wu Y Y, Shi X G, Wang C X, et al. CPFD simulation of hydrodynamics, heat transfer, and reactions in a downer reactor for coal pyrolysis with binary particles[J]. Energy & Fuels, 2019, 33(12): 12295-12307. |
24 | Wang M, Lan X Y, Wang C X, et al. Numerical simulation of the pilot-scale high-density circulating fluidized bed riser[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 3184-3197. |
25 | Shi X G, Wu Y Y, Wang M, et al. Physicochemical processes occurring inside clusters consisting of FCC catalyst particles[J]. Chemical Engineering & Technology, 2017, 40(5): 847-853. |
26 | Wang C. High density gas-solids circulating fluidized bed riser and downer reactors[D]. Ontario :The University of Western Ontario, 2013. |
27 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. USA: Academic Press, 1994. |
28 | Lan X Y, Xu C M, Wang G, et al. CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors[J]. Chemical Engineering Science, 2009, 64(17): 3847-3858. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[13] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[14] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[15] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 301
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||