CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4594-4602.DOI: 10.11949/0438-1157.20220909
• Surface and interface engineering • Previous Articles Next Articles
Jingtao WANG(), Fanfu SONG, Zhiming XU, Yuting JIA()
Received:
2022-06-28
Revised:
2022-08-05
Online:
2022-11-02
Published:
2022-10-05
Contact:
Yuting JIA
通讯作者:
贾玉婷
作者简介:
王景涛(1985—),男,博士,副教授,wjt@neepu.edu.cn
基金资助:
CLC Number:
Jingtao WANG, Fanfu SONG, Zhiming XU, Yuting JIA. Study on the effect of Ni-P-PTFE composite coating on the deposition characteristics of particulate fouling[J]. CIESC Journal, 2022, 73(10): 4594-4602.
王景涛, 宋凡福, 徐志明, 贾玉婷. Ni-P-PTFE复合镀层对颗粒污垢沉积特性影响研究[J]. 化工学报, 2022, 73(10): 4594-4602.
Add to citation manager EndNote|Ris|BibTeX
配方 | 物质 | 浓度 |
---|---|---|
主盐 | 硫酸镍 | 25 g/L |
还原剂 | 次亚磷酸钠 | 30 g/L |
缓冲剂 | 无水乙酸钠 | 10 g/L |
加速剂 | 氨基乙酸(甘氨酸) | 4 g/L |
络合剂 | 柠檬酸钠 | 6 g/L |
络合剂 | 乳酸 | 20 g/L |
纳米粒子 | PTFE | 8~14 ml/L |
稳定剂 | 碘化钾 | 10 ml/L |
表面活性剂 | FC-4(全氟辛基季铵碘化物) | 0.2 g/L |
Table 1 Bath formulations of Ni-P-PTFE
配方 | 物质 | 浓度 |
---|---|---|
主盐 | 硫酸镍 | 25 g/L |
还原剂 | 次亚磷酸钠 | 30 g/L |
缓冲剂 | 无水乙酸钠 | 10 g/L |
加速剂 | 氨基乙酸(甘氨酸) | 4 g/L |
络合剂 | 柠檬酸钠 | 6 g/L |
络合剂 | 乳酸 | 20 g/L |
纳米粒子 | PTFE | 8~14 ml/L |
稳定剂 | 碘化钾 | 10 ml/L |
表面活性剂 | FC-4(全氟辛基季铵碘化物) | 0.2 g/L |
元素 | 质量分数/% |
---|---|
P | 8.5 |
Ni | 65 |
F | 11.17 |
C | 13.13 |
O | 1.88 |
Fe | 0.32 |
Table 2 Ni-P-PTFE composite coating sample element mass percentage
元素 | 质量分数/% |
---|---|
P | 8.5 |
Ni | 65 |
F | 11.17 |
C | 13.13 |
O | 1.88 |
Fe | 0.32 |
测试液体 | 表面能/(mJ/m2) | ||||
---|---|---|---|---|---|
γL | γLW | γAB | γ+ | γ- | |
水 | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
二碘甲烷 | 50.8 | 50.8 | 0 | 0 | 0 |
乙二醇 | 48.0 | 29.0 | 419.0 | 1.9 | 47.0 |
Table 3 The surface energy of the liquid[28]
测试液体 | 表面能/(mJ/m2) | ||||
---|---|---|---|---|---|
γL | γLW | γAB | γ+ | γ- | |
水 | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
二碘甲烷 | 50.8 | 50.8 | 0 | 0 | 0 |
乙二醇 | 48.0 | 29.0 | 419.0 | 1.9 | 47.0 |
表面 | PTFE浓度/(ml/L) | (°) | (°) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | |
---|---|---|---|---|---|---|---|---|
碳钢 | 82.8 | 50.6 | 62.2 | 33.9 | 0.004 | 8.22 | 34.0 | |
镀层1 | 8 | 85.7 | 59.5 | 74.7 | 28.9 | 0.2 | 10.5 | 31.8 |
镀层2 | 10 | 93.1 | 62.1 | 79.4 | 27.3 | 0.2 | 5.9 | 29.6 |
镀层3 | 12 | 94.7 | 65.0 | 71.0 | 25.7 | 0.1 | 2.5 | 26.8 |
镀层4 | 14 | 99.8 | 68.0 | 82.4 | 24.0 | 0.05 | 2.8 | 24.7 |
Table 4 Surface energy of carbon steel and Ni-P-PTFE composite coatings at different concentrations of PTFE
表面 | PTFE浓度/(ml/L) | (°) | (°) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | |
---|---|---|---|---|---|---|---|---|
碳钢 | 82.8 | 50.6 | 62.2 | 33.9 | 0.004 | 8.22 | 34.0 | |
镀层1 | 8 | 85.7 | 59.5 | 74.7 | 28.9 | 0.2 | 10.5 | 31.8 |
镀层2 | 10 | 93.1 | 62.1 | 79.4 | 27.3 | 0.2 | 5.9 | 29.6 |
镀层3 | 12 | 94.7 | 65.0 | 71.0 | 25.7 | 0.1 | 2.5 | 26.8 |
镀层4 | 14 | 99.8 | 68.0 | 82.4 | 24.0 | 0.05 | 2.8 | 24.7 |
种类 | 平均 粒径/nm | 纯度/% | 比表面积/(m2/g) | 密度/ (g/cm3) | 晶型 | 颜色 |
---|---|---|---|---|---|---|
TiO2 | 40 | 99.8 | 160 | 4.26 | 锐钛 | 白色 |
Table 5 Parameters of TiO2 nanoparticles
种类 | 平均 粒径/nm | 纯度/% | 比表面积/(m2/g) | 密度/ (g/cm3) | 晶型 | 颜色 |
---|---|---|---|---|---|---|
TiO2 | 40 | 99.8 | 160 | 4.26 | 锐钛 | 白色 |
31.73 | 0.08 | 35.14 | 35.08 |
Table 6 Surface energy of TiO2(40 nm)
31.73 | 0.08 | 35.14 | 35.08 |
1 | 杨善让, 徐志明, 孙灵芳, 等. 换热设备污垢与对策[M]. 北京: 科学出版社, 2004: 17. |
Yang S R, Xu Z M, Sun L F, et al. Fouling of Heat Exchange Equipment and Countermeasure[M]. Beijing: Science Press, 2004: 17. | |
2 | Kuruneru S T W, Vafai K, Sauret E, et al. Application of porous metal foam heat exchangers and the implications of particulate fouling for energy-intensive industries[J]. Chemical Engineering Science, 2020, 228: 115968. |
3 | Xu Z M, Han Z M, Sun A D, et al. Numerical study of particulate fouling characteristics in a rectangular heat exchange channel[J]. Applied Thermal Engineering, 2019, 154: 657-667. |
4 | 徐志明, 熊骞, 耿晓娅, 等. 腰槽开孔矩形翼涡流发生器纳米氧化镁颗粒污垢特性[J]. 化工学报, 2016, 67(10): 4072-4079. |
Xu Z M, Xiong Q, Geng X Y, et al. Fouling characteristics of magnesia nanoparticles on rectangular wing vortex generator with hole punched at waist groove[J]. CIESC Journal, 2016, 67(10): 4072-4079. | |
5 | Han Z M, Xu Z M. Experimental and numerical investigation on particulate fouling characteristics of vortex generators with a hole[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119130. |
6 | Jung S Y, Jeong J, Park J D, et al. Interplay between particulate fouling and its flow disturbance: numerical and experimental studies[J]. Journal of Membrane Science, 2021, 635: 119497. |
7 | Yang Q R, Zhang Z L, Yao E R, et al. Experimental study of the particulate dirt characteristics on pipe heat transfer surface[J]. Journal of Thermal Science, 2019, 28(5): 1054-1064. |
8 | Pu J H, Shen C, Yang H T, et al. Investigating heat transfer and frosting performance of air source heat pumps with the impact of particulate fouling[J]. Energy for Sustainable Development, 2021, 65: 194-203. |
9 | 王兵兵, 王高翔, 高轶, 等. 颗粒团聚对水基铜纳米流体导热系数影响机理研究[J]. 东北电力大学学报, 2022, 42(3): 83-90. |
Wang B B, Wang G X, Gao Y, et al. Investigation on effect of particles agglomeration on thermal conductivity of water-based copper nanofluids[J]. Journal of Northeast Electric Power University, 2022, 42(3): 83-90. | |
10 | Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(6): 719-734. |
11 | 胡平, 常恬, 陈震宇, 等. 纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J]. 化工学报, 2017, 68(7): 2641-2652. |
Hu P, Chang T, Chen Z Y, et al. Surface modification and application in biomedicine and environmental protection of magnetic Fe3O4 nanoparticles[J]. CIESC Journal, 2017, 68(7): 2641-2652. | |
12 | 王赫, 秦楠, 郭鑫, 等. 锂离子电容器硬碳负极材料的表面改性及其电化学性能研究[J]. 化工学报, 2020, 71(6): 2735-2742. |
Wang H, Qin N, Guo X, et al. Surface modification and electrochemical properties of hard carbon anode material for lithium ion capacitors[J]. CIESC Journal, 2020, 71(6): 2735-2742. | |
13 | 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301. |
Mou S, Zhao C Y, Xu Z G. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1291-1301. | |
14 | 程延海, 邹勇, 程林, 等. 表面改性对换热面抗垢性能的影响[J]. 工程热物理学报, 2009, 30(9): 1528-1530. |
Cheng Y H, Zou Y, Cheng L, et al. Effect of surface modification on anti-fouling properties of heat exchangers[J]. Journal of Engineering Thermophysics, 2009, 30(9): 1528-1530. | |
15 | Zhang S, Liang X J, Gadd G M, et al. Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties[J]. Applied Surface Science, 2019, 490: 231-241. |
16 | Ren J, Xia W W, Feng X, et al. Surface modification of PVDF membrane by sulfonated chitosan for enhanced anti-fouling property via PDA coating layer[J]. Materials Letters, 2022, 307: 130981. |
17 | 叶朝曦. Ni-P化学镀改性换热表面阻垢特性试验研究[D]. 上海: 华东理工大学, 2014. |
Ye Z X. Experimental fouling investigation with modified surface of electroless Ni-P coating[D]. Shanghai: East China University of Science and Technology, 2014. | |
18 | 张翠杰, 刘贯军, 张培彦. Ni-P-PTFE化学复合镀工艺优化及镀层性能研究[J]. 表面技术, 2015, 44(1): 102-105, 111. |
Zhang C J, Liu G J, Zhang P Y. Process optimization of electroless Ni-P-PTFE composite plating and research on the coating performance[J]. Surface Technology, 2015, 44(1): 102-105, 111. | |
19 | Zhao Q, Liu Y, Wang S. Surface modification of water treatment equipment for reducing CaSO4 scale formation[J]. Desalination, 2005, 180: 133-138. |
20 | Matjie R, Zhang S, Zhao Q, et al. Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit[J]. Fuel, 2016, 181: 573-578. |
21 | Gu T T, Meesrisom A, Luo Y G, et al. Listeria monocytogenes biofilm formation as affected by stainless steel surface topography and coating composition[J]. Food Control, 2021, 130: 108275. |
22 | Liu Y, Zhao Q. Influence of surface energy of modified surfaces on bacterial adhesion[J]. Biophysical Chemistry, 2005, 117(1): 39-45. |
23 | Zhao Q, Wang S, Müller-Steinhagen H. Tailored surface free energy of membrane diffusers to minimize microbial adhesion[J]. Applied Surface Science, 2004, 230: 371-378. |
24 | Pereni C I, Zhao Q, Liu Y, et al. Surface free energy effect on bacterial retention[J]. Colloids and Surfaces B: Biointerfaces, 2006, 48(2): 143-147. |
25 | Zhao Q, Liu Y, Wang C, et al. Effect of surface free energy on the adhesion of biofouling and crystalline fouling[J]. Chemical Engineering Science, 2005, 60(17): 4858-4865. |
26 | Nikoo A H, Malayeri M R. Incorporation of surface energy properties into general crystallization fouling model for heat transfer surfaces[J]. Chemical Engineering Science, 2020, 215: 115461. |
27 | 王晖, 顾帼华, 邱冠周. 接触角法测量高分子材料的表面能[J]. 中南大学学报(自然科学版), 2006, 37(5): 942-947. |
Wang H, Gu G H, Qiu G Z. Evaluation of surface free energy of polymers by contact angle goniometry[J]. Journal of Central South University (Science and Technology), 2006, 37(5): 942-947. | |
28 | 王书敏, 张丽华, 代淑兰. 固体表面能测定方法研究进展[J]. 应用化工, 2020, 49(12): 3155-3161. |
Wang S M, Zhang L H, Dai S L. Research progress in the determination of solid surface energy[J]. Applied Chemical Industry, 2020, 49(12): 3155-3161. | |
29 | Zhao Q. Effect of surface free energy of graded Ni-P-PTFE coatings on bacterial adhesion[J]. Surface and Coatings Technology, 2004, 185: 199-204. |
30 | 赵士雄, 王智, 王显胜, 等. 微/纳米颗粒表面能测定方法适用性研究[J]. 环境科学学报, 2018, 38(1): 259-266. |
Zhao S X, Wang Z, Wang X S, et al. Applicability of surface energy measurement methods for micro/nano-size particles[J]. Acta Scientiae Circumstantiae, 2018, 38(1): 259-266. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[3] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[6] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[7] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[8] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[9] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
[10] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[11] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[12] | Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement [J]. CIESC Journal, 2023, 74(4): 1519-1527. |
[13] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[14] | Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract [J]. CIESC Journal, 2023, 74(3): 1113-1125. |
[15] | Longfei JIA, Shaotong FU, Xing XIANG, Huahai ZHANG, Tao ZHANG, Limin WANG. Lattice Boltzmann simulations of the effect of particles movement on momentum transfer process [J]. CIESC Journal, 2023, 74(2): 735-747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||