CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 735-747.DOI: 10.11949/0438-1157.20221423
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Longfei JIA1,2(), Shaotong FU2,3, Xing XIANG2,3, Huahai ZHANG2, Tao ZHANG1, Limin WANG2,3()
Received:
2022-10-31
Revised:
2022-12-17
Online:
2023-03-21
Published:
2023-02-05
Contact:
Limin WANG
贾龙菲1,2(), 付少童2,3, 向星2,3, 张华海2, 张弢1, 王利民2,3()
通讯作者:
王利民
作者简介:
贾龙菲(1996—),女,硕士研究生,jialongfei@ipe.ac.cn
基金资助:
CLC Number:
Longfei JIA, Shaotong FU, Xing XIANG, Huahai ZHANG, Tao ZHANG, Limin WANG. Lattice Boltzmann simulations of the effect of particles movement on momentum transfer process[J]. CIESC Journal, 2023, 74(2): 735-747.
贾龙菲, 付少童, 向星, 张华海, 张弢, 王利民. 颗粒振动影响动量传递过程的格子Boltzmann方法模拟[J]. 化工学报, 2023, 74(2): 735-747.
Add to citation manager EndNote|Ris|BibTeX
文献 | Re=20 | Re=40 | Re = 100 | Re = 200 | ||
---|---|---|---|---|---|---|
Cd | Cd | Cd | Cl | Cd | Cl | |
[ | 2.000 | 1.498 | 1.058±0.001 | — | — | — |
[ | 2.045 | 1.522 | 1.056 | — | — | — |
[ | 2.190 | 1.620 | 1.330±0.014 | ±0.298 | 1.172±0.058 | ±0.668 |
[ | 2.130 | 1.600 | 1.380±0.007 | ±0.300 | 1.290±0.022 | ±0.500 |
[ | 2.030 | 1.520 | — | — | — | — |
本文结果 | 2.152 | 1.600 | 1.375±0.009 | ±0.322 | 1.370±0.045 | ±0.669 |
Table 1 Drag and lift coefficients of the stationary particle at different Reynolds numbers
文献 | Re=20 | Re=40 | Re = 100 | Re = 200 | ||
---|---|---|---|---|---|---|
Cd | Cd | Cd | Cl | Cd | Cl | |
[ | 2.000 | 1.498 | 1.058±0.001 | — | — | — |
[ | 2.045 | 1.522 | 1.056 | — | — | — |
[ | 2.190 | 1.620 | 1.330±0.014 | ±0.298 | 1.172±0.058 | ±0.668 |
[ | 2.130 | 1.600 | 1.380±0.007 | ±0.300 | 1.290±0.022 | ±0.500 |
[ | 2.030 | 1.520 | — | — | — | — |
本文结果 | 2.152 | 1.600 | 1.375±0.009 | ±0.322 | 1.370±0.045 | ±0.669 |
Fig.10 Variation of the mean value of drag coefficient Cdmean and the amplitude of lift coefficient Clmax with vibration frequency when particles transversely oscillating
1 | Dong L, Zhou E, Cai L, et al. Fluidization characteristics of a pulsing dense-phase gas-solid fluidized bed for high-density separation of fine anthracite[J]. Energy & Fuels, 2016, 30(9): 7180-7186. |
2 | Sahu A K, Biswal S K, Reddy P S R, et al. A study on dynamic stability of medium in air dense medium fluidised bed separator[J]. Transactions of Indian Institute of Metals, 2005, 56(1): 103-107. |
3 | 唐天琪, 何玉荣.磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648. |
Tang T Q, He Y R. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed[J]. CIESC Journal, 2022, 73(6): 2636-2648. | |
4 | Yu X, Luo Z, Li H, et al. Effect of vibration on the separation efficiency of oil shale in a compound dry separator[J]. Fuel, 2018, 214: 242-253. |
5 | Uwaoma R C, Strydom C A, Matjie R H, et al. Influence of density separation of selected South African coal fines on the products obtained during liquefaction using tetralin as a solvent[J]. Energy & Fuels, 2019, 33(3): 1837-1849. |
6 | Derksen J J. Numerical simulation of solids suspension in a stirred tank[J]. AIChE Journal, 2003, 49(11): 2700-2714. |
7 | Sbrizzai F, Lavezzo V, Verzicco R, et al. Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor[J]. Chemical Engineering Science, 2006, 61(9): 2843-2851. |
8 | Ongoren A, Rockwell D. Flow structure from an oscillating cylinder(Part 2): Mode competition in the near wake[J]. Journal of Fluid Mechanics, 1988, 191: 225-245. |
9 | Gómez L C, Milioli F E. Numerical study on the influence of various physical parameters over the gas-solid two-phase flow in the 2D riser of a circulating fluidized bed[J]. Powder Technology, 2003, 132(2/3): 216-225. |
10 | 马双忱, 周权, 曹建宗, 等.湿法脱硫系统动态过程建模与仿真[J]. 化工学报, 2020, 71(8): 3741-3751. |
Ma S C, Zhou Q, Cao J Z, et al. Modeling and simulation of wet desulfurization system dynamic process[J]. CIESC Journal, 2020, 71(8): 3741-3751 | |
11 | 任盼锋, 海润泽, 李奇, 等. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
Ren P F, Hai R Z, Li Q, et al. Review of numerical study on liquid-solids two-phase mass transfer process in fluidized bed[J]. CIESC Journal, 2022, 73(1): 1-17. | |
12 | 陈飞国, 葛蔚.耦合粗粒化离散颗粒法和多相物质点法的气固两相流模拟[J]. 过程工程学报, 2019, 19(4): 651-660. |
Chen F G, Ge W. Coupling of coarse-grained discrete particle method and particle-in-cell method for simulation of gas-solid flow[J]. Chinese Journal Process Engineering, 2019, 19(4): 651-660. | |
13 | Seibert K D, Burns M A. Simulation of structural phenomena in mixed-particle fluidized beds[J]. AIChE Journal, 1998, 44(3): 528-537. |
14 | Blackburn H M, Henderson R D. A study of two-dimensional flow past an oscillating cylinder[J]. Journal of Fluid Mechanics, 1999, 385: 255-286. |
15 | Placzek A, Sigrist J F, Hamdouni A. Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: forced and free oscillations[J]. Computers & Fluids, 2009, 38(1): 80-100. |
16 | Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation(Part 1): Theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271: 285-309. |
17 | Aidun C K, Lu Y, Ding E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation[J]. Journal of Fluid Mechanics, 1998, 373: 287-311. |
18 | Peskin C S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3): 220-252. |
19 | Noble D R, Torczynski J R. A lattice-Boltzmann method for partially saturated computational cells[J]. International Journal of Modern Physics C, 1998, 9(8): 1189-1201. |
20 | Xiong Q, Li B, Zhou G, et al. Large-scale DNS of gas-solid flows on Mole-8.5[J]. Chemical Engineering Science, 2012, 71: 422-430. |
21 | 贺睿, 乔崇智, 王利民, 等.运动颗粒对传质过程影响的格子Boltzmann模拟[J]. 过程工程学报, 2021, 21(2): 125-133. |
He R, Qiao C Z, Wang L M, et al. Lattice Boltzmann simulation of mass transfer process affected by a moving particle[J]. Chinese Journal Process Engineering, 2021, 21(2): 125-133. | |
22 | He X, Zou Q, Luo L S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87(1): 115-136. |
23 | 付少童, 贾龙菲, 王利民. 一种改进的浸入运动边界算法[J]. 空气动力学学报, 2022, DOI: 10.7638/kqdlxxb-2022.0067 . |
Fu S T, Jia L F, Wang L M. An improved algorithm for immersed moving boundary[J]. Acta Aerodynamica Sinica, 2022, DOI: 10.7638/kqdlxxb-2022.0067 . | |
24 | Hassan R. The lift and drag forces on a circular cylinder oscillating in a flowing fluid[J]. Proceedings of the Royal Society of London, 1964, 277(1368): 51-75. |
25 | Koopmann G H. The vortex wakes of vibrating cylinders at low Reynolds numbers[J]. Journal of Fluid Mechanics, 1967, 28(3): 501-512. |
26 | Biermann D, Herrnstein W H. The interference between struts in various combinations[R]. National Advisory Committee for Aeronautics Collection, 1934. |
27 | Williamson C H K. Evolution of a single wake behind a pair of bluff bodies[J]. Journal of Fluid Mechanics, 1985, 159: 1-18. |
28 | Spivack H M. Vortex frequency and flow pattern in the wake of two parallel cylinders at varied spacing normal to an air stream[J]. Journal of the Aeronautical Sciences, 1946, 13(6): 289-301. |
29 | Zdravkovich M M. Review of flow interference between two circular cylinders in various arrangements[J]. Journal of Fluid Engineering, 1977: 618-633. |
30 | Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases(Ⅰ): Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. |
31 | Qian Y H, d'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484. |
32 | Bouzidi M, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of fluids, 2001, 13(11): 3452-3459. |
33 | Filippova O, Hänel D. Grid refinement for lattice-BGK models[J]. Journal of computational Physics, 1998, 147(1): 219-228. |
34 | Lallemand P, Luo L S. Lattice Boltzmann method for moving boundaries[J]. Journal of Computational Physics, 2003, 184(2): 406-421. |
35 | Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598. |
36 | Sumer B M. Hydrodynamics Around Cylindrical Strucures[M]. Singapore: World Scientific, 2006. |
37 | Fornberg B. A numerical study of steady viscous flow past a circular cylinder[J]. Journal of Fluid Mechanics, 1980, 98(4): 819-855. |
38 | Dennis S C R, Chang G Z. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100[J]. Journal of Fluid Mechanics, 1970, 42(3): 471-489. |
39 | Calhoun D. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions[J]. Journal of Computational Physics, 2002, 176(2): 231-275. |
40 | Russell D, Wang Z J. A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow[J]. Journal of Computational Physics, 2003, 191(1): 177-205. |
41 | Ye T, Mittal R, Udaykumar H S, et al. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries[J]. Journal of Computational Physics, 1999, 156(2): 209-240. |
42 | 龚帅, 郭照立.横向振荡圆柱绕流的格子Boltzmann方法模拟[J]. 力学学报, 2011, 43(5): 809-818. |
Gong S, Guo Z L. Lattice Boltzmann simulation of the flow around a circular cylinder oscillating transversely [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 809-818. | |
43 | 龚帅, 郭照立.流向振荡圆柱绕流的格子Boltzmann方法模拟[J]. 力学学报, 2011, 43(1): 11-17. |
Gong S, Guo Z L. Lattice Boltzmann simulation of the flow around a circular cylinder oscillating streamwisely [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 11-17. | |
44 | Haussmann M, Hafen N, Raichle F, et al. Galilean invariance study on different lattice Boltzmann fluid-solid interface approaches for vortex-induced vibrations[J]. Computers & Mathematics with Applications, 2020, 80(5): 671-691. |
45 | Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4): 355-381. |
46 | Singh S P, Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes[J]. Journal of Fluids and Structures, 2005, 20(8): 1085-1104. |
47 | Kumar S, Navrose, Mittal S. Lock-in in forced vibration of a circular cylinder[J]. Physics of Fluids, 2016, 28(11): 113605. |
[1] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[2] | Xuewen LIU, Jinjing LI, Xiaojun QUAN, Wei XIONG. Lattice Boltzmann study on single solid particle promoting thin liquid film rupture [J]. CIESC Journal, 2020, 71(7): 3091-3097. |
[3] | Xing LI, Bofeng BAI. Wake of a stationary sphere near a wall [J]. CIESC Journal, 2019, 70(9): 3300-3306. |
[4] | Guowen XU, Kun LI, Yifan JIANG, Mingjun HUANG, Dongxu FANG, Shanshan CAI. Mesoscopic study on effective thermal conductivity of dry soil under three types of random fractal structures [J]. CIESC Journal, 2019, 70(7): 2496-2502. |
[5] | LI Bin, ZHANG Shangbin, ZHANG Lei, TENG Zhaoyu, WANG Youtian. Numerical simulation of bubble-particle flow in bubbling bed based on LBM-DEM [J]. CIESC Journal, 2018, 69(9): 3843-3850. |
[6] | LIU Bingbing, WANG Mingyu, GAO Hongtao, ZHANG Shaojun. Composite model of heat transfer and phase transition with high gas and liquid density ratio [J]. CIESC Journal, 2018, 69(8): 3418-3427. |
[7] | LIN Qi, WANG Shugang, WANG Jihong, SONG Shuanglin. Numerical simulation of constrained melting inside spherical capsule by lattice Boltzmann method [J]. CIESC Journal, 2018, 69(6): 2373-2379. |
[8] | YANG Chen, HE Hangxing. Equation-free multi-scale simulation of two-phase gas-liquid separation [J]. CIESC Journal, 2015, 66(6): 2031-2040. |
[9] | LI Chao, WU Huiying, HUANG Rongzong. Lattice Boltzmann simulation of droplet breakup dynamic behavior under electric field [J]. CIESC Journal, 2014, 65(8): 2882-2888. |
[10] | FU Yuhang, ZHAO Shufang, WANG Wentan, JIN Yong, CHENG Yi. Application of lattice Boltzmann method for simulation of multiphase/multicomponent flow in microfluidics [J]. , 2014, 65(7): 2535-2543. |
[11] | ZHU Weibing, WANG Meng, CHEN Hong, HAN Ding, LIU Jianwen. Lattice Boltzmann simulations for fluid flow through porous media [J]. CIESC Journal, 2013, 64(S1): 33-40. |
[12] | FU Bo, YUAN Xigang, ZHANG Huishu, YU Kuotsung. Gas-liquid mass transfer theory accompanied by Rayleigh convection [J]. CIESC Journal, 2013, 64(S1): 21-25. |
[13] | SUN Tao, LI Weizhong, YANG Baicheng, ZHU Puqing. Three-dimensional numerical simulation of multiple bubbles rising and interaction with lattice Boltzmann method [J]. CIESC Journal, 2013, 64(5): 1586-1591. |
[14] | LI Sha, YONG Yumei, YIN Xiaolong, YANG Chao. Numerical simulation for influence of pore characteristics on gas diffusion in porous media [J]. CIESC Journal, 2013, 64(4): 1242-1248. |
[15] | LI Weizhong, ZHANG Xiaohong, DONG Bo, SUN Tao. Lattice Boltzmann simulation of moving characteristics of a single bubble rising along inclined adiabatic surface [J]. CIESC Journal, 2013, 64(11): 3940-3948. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||